- Browse by Subject
Browsing by Subject "Hydroxyapatites"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Binding of oral veillonella species to saliva-coated hydroxyapatite(1993) Wu, Sonya L.; Hughes, Christopher V.; Gregory, Richard L.; Sanders, Brian J.; Bowman, Dennis E.; Avery, David R.Veillonella spp. are found in high numbers in the mouth in dental plaque and on the mucosa. Veillonellae utilize lactic acid for their metabolic needs. A symbiotic relationship between Veillonellae and other oral bacteria, including a nutritional relationship with some streptococci, has been demonstrated both in vitro and in vivo. Thus, Veillonellae may protect the host from dental caries. Adherence is the initial step in bacterial colonization of oral surfaces. Recent evidence suggests that certain oral bacteria express molecules (adhesins) on their cell surface, which recognize receptors on other oral bacteria and/or in salivary pellicle. It has been previously demonstrated that Veillonella spp. bind avidly to Streptococcus. spp. found in subgingival plaque. The present study investigated the ability of V. atypica PK1910 to bind to saliva-coated hydroxyapatite (SHA), a model for adherence to the salivary pellicle. The results show that there was statistically significant enhanced binding of Veillonella atypica PK1910 to saliva-coated hydroxyapatite beads. (p< 0.05) Three classes of coaggregation-defective mutants of V. atypica PK1910 were tested for their ability to bind to SHA. Interestingly, they did not demonstrate any enhanced binding to saliva-coated hydroxyapatite beads. Heating of PK1910 did not effect binding to SHA. In contrast, protease treatment of the veillonella cell surface inactivated binding. Therefore, it appears that V. atypica PK1910, in addition to binding to oral Streptoccoccus spp. in dental plaque, may also colonize the tooth surface by binding directly to the salivary pellicle. It appears that a distinct heat stable protein may mediate this binding to SHA.Item The Effects of Nano-Hydroxyapatite in a Double Antibiotic Paste-Loaded Methycellulose Carrier on Dental Pulp Stem Cells(2019) Everhart, Adam R.; Spolnik, Kenneth J.; Bruzzaniti, Angela; Bringas, Josef S.; Ehrlich, Ygal; Gregory, Richard L.The effects of hydroxyapatite in a DAP-loaded MC carrier on dental pulp stem cells Introduction: Regenerative endodontic procedures (REP) require disinfection techniques to eliminate bacteria from the infected immature root canal system and promote new growth of the pulp-dentin complex. Double antibiotic paste (DAP), a mixture of ciprofloxacin and metronidazole, has shown efficacy in doing so while minimizing cytotoxicity on dental pulp stem cells (DPSC). Stem cells, scaffolding, and growth factors are necessary in the maturation, proliferation, and differentiation of mesenchymal stem cells into the root canal system. Nano-hydroxyapatite (n-HA) has a history of biocompatibility and, in addition, has shown promising effects as a tissue bioengineering material. Objective: The aim of this in vitro study was to investigate the proliferation and mineralization of DPSC in the presence of 1% DAP and methylcellulose (MC) with varying concentrations of nano-hydroxyapatite. Materials and Methods: DPSC were plated in 24-well plates containing culture media. The next day, semi-permeable 0.1 mm Transwell chambers were inserted into the wells to separate the reservoirs for medicaments. Treatment paste composed of methylcellulose containing 1% DAP with either 0.25%, 0.50%, or 1.0% nano-hydroxyapatite was added along with culture media. Methylcellulose alone and calcium hydroxide (Ultracal) were used as control groups. After 3 days, cells were evaluated for cytotoxic effects using an MTS proliferation assay (n = 10, in triplicate). DPSCs were also cultured with these medicaments for 7 days in osteogenic media and evaluated for alkaline phosphatase (ALP) activity and mineralization activity (n = 13, in triplicate). Comparisons between groups for differences in mineralization, BSA, and ALP activity were performed using analysis of variance (ANOVA), with different variances allowed for each group and a random effect included in the model to account for correlation within each of the three trials. A simulation-based model was used to adjust for multiple comparisons. Results: Addition of n-HA treatment groups increased mineralization significantly greater than calcium hydroxide, with MC alone and MC+DAP+0.5% HA providing the greatest effect. Regarding ALP, all HA concentrations performed significantly greater than MC and DAP concentrations. Proliferation demonstrated similar metabolic activity in all experimental groups with few comparisons significant. Conclusion: The challenge in REPs is to maintain survival, and preferably promote the proliferation and development of DPSCs into the pulp-dentin complex with a consistent treatment outcome. The combination of DAP with hydroxyapatite may allow for both disinfection and improved mineralization and cellular differentiation. This contribution has shown significant ability to increase stem cell differentiation into an osteogenic lineage as well as calcium deposition, indicating end goal results of regenerative procedures.Item The impact of hydroxyapatite on alkaline phosphatase activity and mineral deposition of dental pulp stem cells using a double antibiotic paste loaded methylcellulose carrier(2020) Fischer, Benjamin I.; Bruzzaniti, Angela; Spolnik, Kenneth; Ehrlich, Ygal; Bringas, Josef; Gregory, RichardIntroduction: Regenerative endodontic procedures (REPs) are a type of endodontic treatment aimed at replacing damaged tooth structures, including dentin and root structures, as well as cells of the pulp-dentin complex. Double antibiotic paste (DAP) has been shown to be efficacious in achieving disinfection of the root canal system while minimizing cytotoxicity to dental pulp stem cells (DPSCs). Hydroxyapatite (HA) is an extracellular, mineralized component of bone that has shown much promise as a scaffold in the field of regenerative medicine. Objective: The objective of this study was to evaluate the effects of HA in a DAP loaded methylcellulose (MC) carrier on the differentiation and mineral deposition of DPSC over time. Materials and Methods: DPSCs were plated in 24-well plates with culture media. The following day, semi-permeable 0.1 m chambers were inserted into the wells to separate the reservoirs and permit delivery of medicaments. 100 L treatment paste composed of MC with 1% DAP and either 0.5% or 1.0% nano-HA was added, followed by additional culture media. After 3 days of treatment, medicaments were removed and DPSCs were cultured for an additional 9 days with replacement of media every 3-4 days. At Day 12, DPSCs were evaluated for alkaline phosphatase (ALP) activity using a biochemical assay and mineral deposition using an Alizarin Red S Ca2+ staining assay (4 wells/group). Comparisons between groups were performed using one-way analysis of variance (ANOVA) with a 5% significance level used for all tests. Results: A trend towards increased ALP and mineral deposition activity was noted among the groups with HA added to DAP with MC. Although these trends were not statistically significant, a trend towards increased ALP and mineral deposition was observed after 3-day medicament exposure. The results were similar to previous findings using 7-day medicament treatments. Conclusion: The addition of HA showed a trend towards improved differentiation and mineral deposition of DPSCs compared to DAP with MC. Although additional studies are required, these results showed suggest that even with a shortened treatment time, increased differentiation and mineral deposition of DPSCs may be possible. This study provides additional support that low concentration DAP in a MC carrier has potential application in regenerative endodontic procedures. The novel addition of HA may provide additional osteogenic potential.Item In-vitro evaluation of the effectiveness of polyphenols based strawberry extracts for dental bleaching(Springer Nature, 2023-03-13) Kohli, Shivani; Bhatia, Shekhar; Banavar, Spoorthi Ravi; Al‑Haddad, Afaf; Kandasamy, Murugesh; Bin Qasim, Syed Saad; Kit‑Kay, Mak; Pichika, Mallikarjuna Rao; Daood, Umer; Medicine, School of MedicineTo formulate a dental bleaching agent with strawberry extract that has potent bleaching properties and antimicrobial efficacy. Enamel specimens (3 × 3 × 2 mm3) were prepared. Quaternary Ammonium Silane (CaC2 enriched) was homogenized with fresh strawberries: Group 1: supernatant strawberry (10 g) extract < Group 2: supernatant strawberry (10 g) extract + 15%HA (Hydroxyapatite) < Group 3: supernatant strawberry (10 g) extract + 15% (HA-2%k21) < Group 4: supernatant strawberry (20 g) extract only (20 g strawberries) < Group 5: supernatant strawberry (20 g) extract + 15% HA < Group 6: supernatant strawberry (20 g) extract + 15% (HA-2%K21) < Group 7: In-office Opalescence Boost 35%. Single-colony lactobacillus was examined using confocal microscopy identifying bacterial growth and inhibition in presence of bleaching agents using 300 µL aliquot of each bacterial culture. Images were analysed by illuminating with a 488 nm argon/helium laser beam. Colour difference (∆E00) was calculated using an Excel spreadsheet implementation of the CIEDE2000 colour difference formula and colour change measured between after staining and after bleaching. Scanning electron microscope was used to image specimens. Raman spectra were collected, and enamel slices were used for STEM/TEM analysis. HPLC was used for strawberry extract analysis. Nano-indentation was performed and X-ray photoelectron spectroscopy. Antioxidant activity was determined along with molecular simulation. hDPSCs were expanded for Alamar Blue Analysis and SEM. Mean colour change was significantly reduced in group 1 compared to other groups (p < 0.05). CLSM showed detrimental effects of different strawberry extracts on bioflms, especially with antimicrobial (p < 0.05). Groups 1, 2 and 3 showed flatter/irregular surfaces with condensation of anti-microbial in group 3. In strawberry specimens, bands predominate at 960 cm-1. HPLC determined the strawberry extracts content. Molecular simulation verified interaction between calcium and polyphenol components. XPS peak-fitted high-resolution corresponding results of Ca2p3/2 and Ca2p1/2 for all k21 groups. Combination of 10 g strawberry extract supernatant and 15% (hydroxyapatite 2%k21) improved the whiteness and provided additional antimicrobial potential. The novel strawberry extract and antimicrobial based dental formulation had immediate bleaching effect without promoting significant changes in enamel morphology.Item Pulp reactions to a synthetic hydroxyapatite and chlorhexidine in monkeys(1980) Ibarra, Alejandro JavierThe study compared pulp reactions to a synthetic hydroxyapatite and to calcium hydroxide with either one percent chlorhexidine or distilled water as a mixing vehicle. Forty-seven permanent teeth of two monkeys were mechanically exposed under aseptic conditions. The pulps were then capped with one of the following: synthetic hydroxyapatite mixed with chlorhexidine; synthetic hydroxyapatite mixed with water; calcium hydroxide mixed with chlorhexidine; calcium hydroxide mixed with water. Small square sheets of gold foil were then placed over the capping material. A base of IRM was placed and the cavities were restored with amalgam. The teeth were extracted at 14 and 90 days after pulp capping. The specimens were fixed in 10% formalin and decalcified in 5% formic acid. Serial sections 7 microns thick were prepared and stained with hematoxylin and eosin. The synthetic hydroxyapatite mixed with one percent chlorhexidine or water was well tolerated by the dental pulp. Complete bridging occurred infrequently in the specimens capped with the hydroxyapatite, compared to those capped with calcium hydroxide, which usually showed complete bridging of the exposure.