- Browse by Subject
Browsing by Subject "Hydrolysis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Molecular mechanism of orlistat hydrolysis by the thioesterase of human fatty acid synthase for targeted drug discovery(2014) Miller, Valerie Fako; Zhang, Jian-Ting; Jerde, Travis J.; Liu, Jing-Yuan; Pflug, Beth R.; Pollok, Karen E.; Safa, Ahmad R.Fatty acid synthase (FASN) is over-expressed in many cancers, and novel inhibitors that target FASN may find use in the treatment of cancers. It has been shown that orlistat, an FDA approved drug for weight loss, inhibits the thioesterase (TE) of FASN, but can be hydrolyzed by TE. To understand the mechanisms of TE action and for designing better FASN inhibitors, I examined the mechanism of orlistat hydrolysis by TE using molecular dynamics simulations. I found that the hexyl tail of orlistat undergoes a conformational transition, destabilizing a hydrogen bond that forms between orlistat and the active site histidine. A water molecule can then hydrogen bond with histidine and become activated to hydrolyze orlistat. These findings suggest that rational design of inhibitors that block hexyl tail transition may lead to a more potent TE inhibitor. To search for novel inhibitors of TE, I performed virtual DOCK screening of FDA approved drugs followed by a fluorogenic assay using recombinant TE protein and found that proton pump inhibitors (PPIs) can competitively inhibit TE. PPIs, which are used for the treatment of gastroesophageal reflux and peptic ulcers, work to decrease gastric acid production by binding irreversibly with gastric hydrogen potassium ATPase in the stomach. Recently, PPIs have been reported to reduce drug resistance in cancer cells when used in combination with chemotherapeutics, although the mechanism of resistance reduction is unknown. Further investigation showed that PPIs are able to decrease FASN activity and cancer cell proliferation in a dose-dependent manner. These findings provide new evidence that FDA approved PPIs may synergistically suppress cancer cells by inhibiting TE of FASN and suggests that the use of PPIs in combinational therapies for the treatment of many types of cancer, including pancreatic cancer, warrants further investigation.Item Mouse Pharmacokinetics and In Vitro Metabolism of SH-11037 and SH-11008, Synthetic Homoisoflavonoids for Retinal Neovascularization(MDPI, 2022-10-24) Kim, Eun-yeong; Lee, Bit; Kwon, Sangil; Corson, Timothy W.; Seo, Seung-Yong; Lee, Kiho; Biochemistry and Molecular Biology, School of MedicineCremastranone is a member of the homoisoflavanone family with anti-angiogenic activity in the eyes. SH-11037, a potent and selective synthetic homoisoflavonoid derived from cremastranone, was studied here for pharmacokinetics and metabolism characterization with a special focus on esterase-mediated hydrolysis. SH-11037 was shown to be converted rapidly and nearly completely to SH-11008 following an intravenous dose in mice. SH-11008 showed a high systemic clearance well exceeding the hepatic blood flow in mice. Neither SH-11037 nor SH-11008 were detected in plasma following oral administration of SH-11037 and SH-11008 in mice. Carboxylesterase was shown to be responsible for the rapid and quantitative hydrolysis of SH-11037 to SH-11008 in mouse plasma; the hydrolytic bioconversion was much slower in dog and human plasma, with butyrylcholinesterase and paraoxonase 1 likely being responsible. In vitro metabolism studies with liver S9 fractions suggested that SH-11008 was likely to have a high hepatic metabolic clearance with a predicted hepatic extraction ratio close to 1 in both mouse and human. In conclusion, SH-11037 and SH-11008 both appear to possess pharmacokinetic profiles suboptimal as a systemic agent. SH-11008 is suggested to possess a low potential for systemic toxicity suitable as a topical ocular therapeutic agent.