- Browse by Subject
Browsing by Subject "Hydrodynamics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The development of polystyrene based microfluidic gas generation system(2015-05) Yuanzhi, Cao; Zhu, Likun; Yu, Huidan; El-Mounayri, Hazim A.; Anwar, SohelThe purpose of this thesis is to use experimental methods to seek deeper understanding and better performance in the self-circulating self-regulating microfluidic gas generator initially developed in Dr. Zhu’s group, by changing the major features and dimensions in the reaction channel of the device. In order to effectively conduct experiments described above, a microfabrication method that is capable of making new microfluidic devices with low cost, short time period, as well as relatively high accuracy was needed first. Developing such a fabrication method is the major part of this thesis. We initially used patterned polymer films and glass slide, and bonded them together by sequentially aligning and stacking them into a microfluidic device with patterned double-sided tapes. Later we developed a more advanced microfabrication method that used only patterned polystyrene (PS) films. The patterned PS films were obtained from a digital cutter and they were bonded into a microfluidic device by thermopress bonding method that required no heterogeneous bonding agents. This new method did not need manual assembly which greatly improved its precision (~ 100 µm), and it used only PS as device material that has favorable surface wetting property for microfluidics applications. In order to find the optimized microfluidic channel design to improve gas generating performance, we've designed and fabricated microfluidic devices with different channel dimensions using the PS fabrication method. Based on the gas generation testing results of those devices, we were able to come up with the optimal dimensions for the reaction channel that had the best gas generation performance. To obtain a more fundamental understanding about the working mechanism of our device and its bubble dynamics, we have conducted ultrafast X-ray imaging test at Advanced Photon Source (APS), Argonne National Laboratory. High speed (100 KHz) phase contrast images were captured that allowed us to observe directly inside the reaction channel on the cross section view during the self-circulating catalytic reaction. The images provided us with lots of insightful information that in turn helped the dimensional improvement for the microchannel design. The 100 KHz high speed images also gave us useful information about the dynamics of bubble development on a catalyst bed, such as growth and merging of the bubbles.Item The mobility of phosphorus, iron, and manganese through the sediment–water continuum of a shallow eutrophic freshwater lake under stratified and mixed water-column conditions(Springer, 2016) Giles, Courtney D.; Isles, Peter D. F.; Manley, Tom; Xu, Yaoyang; Druschel, Gregory K.; Schroth, Andrew W.; Earth and Environmental Sciences, School of ScienceThe management of external nutrient inputs to eutrophic systems can be confounded due to a persistent pool of phosphorus (P) in lake sediments. The behaviors of P and trace metals depend largely on the reductive dissolution of amorphous iron (Fe) and manganese (Mn) (oxy)hydroxides in sediments; however, a holistic understanding of these dynamics in relation to the broader ecological and hydrodynamic conditions of the system remains elusive. We used a high-frequency monitoring approach to develop a comprehensive conceptual model of P, Mn, and Fe dynamics across the sediment water continuum of a shallow bay in Lake Champlain (Missisquoi Bay, USA). The greatest release of sediment P, Mn, and Fe occurred under stable hydrodynamic conditions, particularly during the onset of the cyanobacterial bloom and was associated with low available P and the accumulation of soluble Mn and Fe above the sediment–water interface (SWI). During the warmest part of the season, bloom severity and sediment P release was partially regulated by hydrodynamic drivers, which changed on hourly time scales to affect redox conditions at the SWI and bottom water concentrations of soluble P, Mn, and Fe. A geochemically distinct increase in soluble P and Fe concentrations, but not Mn, marked the influence of riverine inputs during a late season storm disturbance. Despite continued depletion of the reactive sediment P and metals pool into the bloom period, declining temperatures and a well-mixed water column resulted in bloom senescence and the return of P, Mn, and Fe to surface sediments. The closed cycling of P and metals in Missisquoi Bay poses a significant challenge for the long-term removal of P from this system. Multiple time-scale measures of physical and biogeochemical changes provide a basis for understanding P and trace metals behavior across sediments and the water column, which shape seasonally variable cyanobacterial blooms in shallow eutrophic systems.