- Browse by Subject
Browsing by Subject "Human brain"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Chromatographic separation of reaction products from the choline acetyltransferase and carnitine acetyltransferase assay: differential ChAT and CrAT activity in brain extracts from Alzheimer's disease versus controls(Wiley, 2012) Bailey, Jason A.; Lahiri, Debomoy K.; Psychiatry, School of MedicineCholine acetyltransferase (ChAT) catalyzes the reaction between choline and acetylcoenzyme A (AcCoA) to form acetylcholine (ACh) in nerve terminals. ACh metabolism has implications in numerous aspects of physiology and varied disease states, such as Alzheimer's disease. Therefore a specific, sensitive, and reliable method for detecting ChAT enzyme activity is of great utility in a number of situations. Using an existing radionuclide-based enzyme activity assay, we have observed detectable ChAT signals from non-cholinergic cells, suggesting a contaminant in the assay producing an artifactual signal. Previous reports have suggested that L-acetylcarnitine (LAC) contaminates many assays of ChAT activity, because of difficulties in separating LAC from ACh by organic extraction. To determine the source of this hypothesized artifact and to rectify the problem, we have developed a paper chromatography-based assay for the detection of acetylcholine and other contaminating reaction products of this assay, including LAC. Our first goal was to develop a simple and economical method for resolving and verifying the identities of various reaction products or contaminants that could be performed in most laboratories without specialized equipment. Our second goal was to apply this separation method in postmortem human brain tissue samples. Our assay successfully detected several contaminants, especially in assays using brain tissue, and allowed the separation of the intended ACh product from these contaminants. We further demonstrate that this assay can be used to measure carnitine acetyltransferase (CrAT) activity in the same samples, and assays comparing ChAT and CrAT show that CrAT is highly active in neuronal tissues and in neuronal cell cultures relative to ChAT. Thus, the simple chromatography-based assay we describe allows the measurement of specific reaction products separated from contaminants using commonly available and inexpensive materials. Further, we show that ChAT activity is significantly reduced in brain extracts from Alzheimer's disease compared to controls.Item Human Brain Lipidomics: Utilities of Chloride Adducts in Flow Injection Analysis(MDPI, 2021-04-28) Wood, Paul L.; Hauther, Kathleen A.; Scarborough, Jon H.; Craney, Dustin J.; Dudzik, Beatrix; Cebak, John E.; Woltjer, Randall L.; Psychiatry, School of MedicineCeramides have been implicated in a number of disease processes. However, current means of evaluation with flow infusion analysis (FIA) have been limited primarily due to poor sensitivity within our high-resolution mass spectrometry lipidomics analytical platform. To circumvent this deficiency, we investigated the potential of chloride adducts as an alternative method to improve sensitivity with electrospray ionization. Chloride adducts of ceramides and ceramide subfamilies provided 2- to 50-fold increases in sensitivity both with analytical standards and biological samples. Chloride adducts of a number of other lipids with reactive hydroxy groups were also enhanced. For example, monogalactosyl diacylglycerols (MGDGs), extracted from frontal lobe cortical gray and subcortical white matter of cognitively intact subjects, were not detected as ammonium adducts but were readily detected as chloride adducts. Hydroxy lipids demonstrate a high level of specificity in that phosphoglycerols and phosphoinositols do not form chloride adducts. In the case of choline glycerophospholipids, the fatty acid substituents of these lipids could be monitored by MS2 of the chloride adducts. Monitoring the chloride adducts of a number of key lipids offers enhanced sensitivity and specificity with FIA. In the case of glycerophosphocholines, the chloride adducts also allow determination of fatty acid substituents. The chloride adducts of lipids possessing electrophilic hydrogens of hydroxyl groups provide significant increases in sensitivity. In the case of glycerophosphocholines, chloride attachment to the quaternary ammonium group generates a dominant anion, which provides the identities of the fatty acid substituents under MS2 conditions.