- Browse by Subject
Browsing by Subject "Human articular cartilage"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Noninvasive Assessment of Osteoarthritis Severity in Human Explants by Multicontrast MRI(Wiley, 2014) Griebel, Adam J.; Trippel, Stephen B.; Emery, Nancy C.; Neu, Corey P.; Orthopaedic Surgery, School of MedicinePurpose: Medical imaging has the potential to noninvasively diagnose early disease onset and monitor the success of repair therapies. Unfortunately, few reliable imaging biomarkers exist to detect cartilage diseases before advanced degeneration in the tissue. Method: In this study, we quantified the ability to detect osteoarthritis (OA) severity in human cartilage explants using a multicontrast magnetic resonance imaging (MRI) approach, inclusive of novel displacements under applied loading by MRI, relaxivity measures, and standard MRI. Results: Displacements under applied loading by MRI measures, which characterized the spatial micromechanical environment by 2D finite and Von Mises strains, were strong predictors of histologically assessed OA severity, both before and after controlling for factors, e.g., patient, joint region, and morphology. Relaxivity measures, sensitive to local macromolecular weight and composition, including T1ρ, but not T1 or T2, were predictors of OA severity. A combined multicontrast approach that exploited spatial variations in tissue biomechanics and extracellular matrix structure yielded the strongest relationships to OA severity. Conclusion: Our results indicate that combining multiple MRI-based biomarkers has high potential for the noninvasive measurement of OA severity and the evaluation of potential therapeutic agents used in the treatment of early OA in animal and human trials.Item Noninvasive dualMRI-based strains vary by depth and region in human osteoarthritic articular cartilage(Elsevier, 2013) Griebel, A. J.; Trippel, S. B.; Neu, C. P.; Orthopaedic Surgery, School of MedicineObjective: To noninvasively assay the mechanical and structural characteristics of articular cartilage from patients with osteoarthritis (OA) by magnetic resonance imaging (MRI), and to further relate spatial patterns of MRI-based mechanical strain to joint (depth-wise, regional) locations and disease severity. Methods: Cylindrical osteochondral explants harvested from human tissue obtained during total knee replacement surgery were loaded in unconfined compression and 2D deformation data was acquired at 14.1 T using a displacements under applied loading by MRI (dualMRI) approach. After imaging, samples were histologically assessed for OA severity. Strains were determined by depth, and statistically analyzed for dependence on region in the joint and OA severity. Results: Von Mises, axial, and transverse strains were highly depth-dependent. After accounting for other factors, Von Mises, axial, and shear strains varied significantly by region, with largest strain magnitudes observed in explants harvested from the tibial plateau and anterior condyle near exposed bone. Additionally, in all cases, strains in late-stage OA were significantly greater than either early- or mid-stage OA. Transverse strain in mid-stage OA explants, measured near the articular surface, was significantly higher than early-stage OA explants. Conclusion: dualMRI was demonstrated in human OA tissue to quantify the effects of depth, joint region, and OA severity, on strains resulting from mechanical compression. These data suggest dualMRI may possess a wide range of utility, such as validating computational models of soft tissue deformation, assaying changes in cartilage function over time, and perhaps, once implemented for cartilage imaging in vivo, as a new paradigm for diagnosis of early- to mid-stage OA.