- Browse by Subject
Browsing by Subject "Hormone-receptor recognition"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item ‘Smart’ insulin-delivery technologies and intrinsic glucose-responsive insulin analogues(SpringerLink, 2021-05) Jarosinski, Mark A.; Dhayalan, Balamurugan; Rege, Nischay; Chatterjee, Deepak; Weiss, Michael A.; Biochemistry and Molecular Biology, School of MedicineInsulin replacement therapy for diabetes mellitus seeks to minimise excursions in blood glucose concentration above or below the therapeutic range (hyper- or hypoglycaemia). To mitigate acute and chronic risks of such excursions, glucose-responsive insulin-delivery technologies have long been sought for clinical application in type 1 and long-standing type 2 diabetes mellitus. Such 'smart' systems or insulin analogues seek to provide hormonal activity proportional to blood glucose levels without external monitoring. This review highlights three broad strategies to co-optimise mean glycaemic control and time in range: (1) coupling of continuous glucose monitoring (CGM) to delivery devices (algorithm-based 'closed-loop' systems); (2) glucose-responsive polymer encapsulation of insulin; and (3) mechanism-based hormone modifications. Innovations span control algorithms for CGM-based insulin-delivery systems, glucose-responsive polymer matrices, bio-inspired design based on insulin's conformational switch mechanism upon insulin receptor engagement, and glucose-responsive modifications of new insulin analogues. In each case, innovations in insulin chemistry and formulation may enhance clinical outcomes. Prospects are discussed for intrinsic glucose-responsive insulin analogues containing a reversible switch (regulating bioavailability or conformation) that can be activated by glucose at high concentrations.Item A thing of beauty: Structure and function of insulin's "aromatic triplet"(Wiley, 2018-09) Weiss, Michael A.; Lawrence, Michael C.; Biochemistry and Molecular Biology, School of MedicineThe classical crystal structure of insulin was determined in 1969 by D.C. Hodgkin et al. following a 35-year program of research. This structure depicted a hexamer remarkable for its self-assembly as a zinc-coordinated trimer of dimer. Prominent at the dimer interface was an "aromatic triplet" of conserved residues at consecutive positions in the B chain: PheB24 , PheB25 and TyrB26 . The elegance of this interface inspired the Oxford team to poetry: "A thing of beauty is a joy forever" (John Keats as quoted by Blundell, T.L., et al. Advances in Protein Chemistry 26:279-286 [1972]). Here, we revisit this aromatic triplet in light of recent advances in the structural biology of insulin bound as a monomer to fragments of the insulin receptor. Such co-crystal structures have defined how these side chains pack at the primary hormone-binding surface of the receptor ectodomain. On receptor binding, the B-chain β-strand (residues B24-B28) containing the aromatic triplet detaches from the α-helical core of the hormone. Whereas TyrB26 lies at the periphery of the receptor interface and may functionally be replaced by a diverse set of substitutions, PheB24 and PheB25 engage invariant elements of receptor domains L1 and αCT. These critical contacts were anticipated by the discovery of diabetes-associated mutations at these positions by Donald Steiner et al. at the University of Chicago. Conservation of PheB24 , PheB25 and TyrB26 among vertebrate insulins reflects the striking confluence of structure-based evolutionary constraints: foldability, protective self-assembly and hormonal activity.