- Browse by Subject
Browsing by Subject "Histomorphometry"
Item Generation and Characterization of Mouse Models for Skeletal Disease(SpringerLink, 2021) Foxa, Gabrielle E.; Turner, Lisa M.; Robling, Alexander G.; Yang, Tao; Williams, Bart O.; Anatomy and Cell Biology, School of MedicineOur laboratories have used genetically engineered mouse models (GEMMs) to assess genetic contributions to skeletal diseases such as osteoporosis and osteoarthritis. Studies on the genetic contributions to OA are often done by assessing how GEMMs respond to surgical methods that induce symptoms modeling OA. Here, we will describe protocols outlining the induction of experimental OA in mice as well as detailed descriptions of methods for analyzing skeletal phenotypes using micro-computerized tomography and skeletal histomorphometry.Item Tiludronate and clodronate do not affect bone structure or remodeling kinetics over a 60 day randomized trial(BMC, 2018-03-20) Richbourg, Heather A.; Mitchell, Colin F.; Gillett, Ashley N.; McNulty, Margaret A.; Anatomy and Cell Biology, School of MedicineBackground Tiludronate and clodronate are FDA-approved bisphosphonate drug therapies for navicular disease in horses. Although clinical studies have determined their ability to reduce lameness associated with skeletal disorders in horses, data regarding the effect on bone structure and remodeling is lacking. Additionally, due to off-label use of these drugs in young performance horses, effects on bone in young horses need to be investigated. Therefore, the purpose of this randomized, experimental pilot study was to determine the effect of tiludronate and clodronate on normal bone cells, structure and remodeling after 60 days in clinically normal, young horses. Additionally, the effect of clodronate on bone healing 60 days after an induced defect was investigated. Results All horses tolerated surgery well, with no post-surgery lameness and all acquired biopsies being adequate for analyses. Overall, tiludronate and clodronate did not significantly alter any bone structure or remodeling parameters, as evaluated by microCT and dynamic histomorphometry. Tiludronate did not extensively impact bone formation or resorption parameters as evaluated by static histomorphometry. Similarly, clodronate did not affect bone formation or resorption after 60 days. Sixty days post-defect, healing was minimally affected by clodronate. Conclusions Tiludronate and clodronate do not appear to significantly impact bone tissue on a structural or cellular level using standard dose and administration schedules.Item Validation of the modified radiographic union score for tibia fractures (mRUST) in murine femoral fractures(Frontiers Media, 2022-08-03) Alentado, Vincent J.; Knox, Adam M.; Staut, Caio A.; McGuire, Anthony C.; Chitwood, Joseph R.; Mostardo, Sarah L.; Shaikh, Mustufa Z.; Blosser, Rachel J.; Dadwal, Usashi C.; Chu, Tien-Min Gabriel; Collier, Christopher D.; Li, Jiliang; Liu, Ziyue; Kacena, Melissa A.; Natoli, Roman M.; Neurological Surgery, School of MedicineBony union is a primary predictor of outcome after surgical fixation of long bone fractures. Murine models offer many advantages in assessing bony healing due to their low costs and small size. However, current fracture recovery investigations in mice frequently rely on animal sacrifice and costly analyses. The modified Radiographic Union Score for Tibia fractures (mRUST) scoring system is a validated metric for evaluating bony healing in humans utilizing plain radiographs, which are relatively inexpensive and do not require animal sacrifice. However, its use has not been well established in murine models. The aim of this study was to characterize the longitudinal course of mRUST and compare mRUST to other conventional murine fracture analyses. 158 mice underwent surgically created midshaft femur fractures. Mice were evaluated after fracture creation and at 7, 10, 14, 17, 21, 24, 28, 35, and 42 days post-injury. mRUST scoring of plain radiographs was performed by three orthopaedic surgeons in a randomized, blinded fashion. Interrater correlations were calculated. Micro-computed tomography (μCT) was analyzed for tissue mineral density (TMD), total callus volume (TV), bone volume (BV), trabecular thickness, trabecular number, and trabecular separation. Histomorphometry measures of total callus area, cartilage area, fibrous tissue area, and bone area were performed in a blinded fashion. Ultimate torque, stiffness, toughness, and twist to failure were calculated from torque-twist curves. A sigmoidal log-logistic curve fit was generated for mRUST scores over time which shows mRUST scores of 4 to 6 at 7 days post-injury that improve to plateaus of 14 to 16 by 24 days post-injury. mRUST interrater correlations at each timepoint ranged from 0.51 to 0.86, indicating substantial agreement. mRUST scores correlated well with biomechanical, histomorphometry, and μCT parameters, such as ultimate torque (r=0.46, p<0.0001), manual stiffness (r=0.51, p<0.0001), bone percentage based on histomorphometry (r=0.86, p<0.0001), cartilage percentage (r=-0.87, p<0.0001), tissue mineral density (r=0.83, p<0.0001), BV/TV based on μCT (r=0.65, p<0.0001), and trabecular thickness (r=0.78, p<0.0001), among others. These data demonstrate that mRUST is reliable, trends temporally, and correlates to standard measures of murine fracture healing. Compared to other measures, mRUST is more cost-effective and non-terminal. The mRUST log-logistic curve could be used to characterize differences in fracture healing trajectory between experimental groups, enabling high-throughput analysis.