ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Hilbert class field"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The quartic Fermat equation in Hilbert class fields of imaginary quadratic fields
    (World Scientific, 2015-09) Lynch, Rodney; Morton, Patrick; Department of Mathematical Sciences, School of Science
    It is shown that the quartic Fermat equation x4 + y4 = 1 has nontrivial integral solutions in the Hilbert class field Σ of any quadratic field whose discriminant satisfies -d ≡ 1 (mod 8). A corollary is that the quartic Fermat equation has no nontrivial solution in , for p (> 7) a prime congruent to 7 (mod 8), but does have a nontrivial solution in the odd degree extension Σ of K. These solutions arise from explicit formulas for the points of order 4 on elliptic curves in Tate normal form. The solutions are studied in detail and the results are applied to prove several properties of the Weber singular moduli introduced by Yui and Zagier.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University