ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "High resolution"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Plasma drug screening using paper spray mass spectrometry with integrated solid phase extraction
    (Wiley, 2025) Zimmerman-Federle, Hannah; Ren, Greta; Dowling, Sarah; Warren, Cassandra; Rusyniak, Daniel; Avera, Robert; Manicke, Nicholas E.; Chemistry and Chemical Biology, School of Science
    Drug overdoses have risen dramatically in recent years. We developed a simple nontargeted method using a disposable paper spray cartridge with an integrated solid phase extraction column. This method was used to screen for ~160 fentanyl analogs, synthetic cannabinoids, other synthetic drugs, and traditional drugs of abuse in over 300 authentic overdose samples collected at emergency departments in Indianapolis. A solid phase extraction step was implemented on the paper spray cartridge to enable subnanograms per milliliter synthetic drugs screening in plasma. Analysis was performed on a quadrupole orbitrap mass spectrometer using the sequential window acquisition of all theoretical fragment ion spectra approach in which tandem mass spectrometry was performed using 7 m/z isolation windows in the quadrupole. Calibration curves with isotopically labeled internal standards were constructed for 35 of the most frequently encountered synthetic and traditional illicit drugs by US toxicology labs. Additional qualitative‐only drugs in a suspect screening list were also included. Limits of detection in plasma for synthetic cannabinoids ranged from 0.1 to 0.5 and 0.1 to 0.3 ng/mL for fentanyl and its analogs and between 1 and 5 ng/mL for most other drugs. Relative matrix effects were evaluated by determining the variation of the calibration slope in 10 different lots of biofluid and found to be between 3% and 20%. The method was validated on authentic overdose samples collected from two emergency departments in Indianapolis, Indiana, from suspected or known overdoses. Commonly detected synthetic drugs included fentanyl related substances, designer benzodiazepines such as flubromazolam, and the synthetic cannabinoid 5F‐PB‐22.
  • Loading...
    Thumbnail Image
    Item
    Rotating single-shot acquisition (RoSA) with composite reconstruction for fast high-resolution diffusion imaging
    (Wiley, 2018-01) Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M.; Shivraman, Giri; Wu, Yu-Chien; Radiology and Imaging Sciences, School of Medicine
    PURPOSE: To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. METHODS: A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. RESULTS: The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. CONCLUSION: RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University