- Browse by Subject
Browsing by Subject "Heterotaxy syndrome"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Congenital heart defects caused by FOXJ1(Oxford University Press, 2023) Padua, Maria B.; Helm, Benjamin M.; Wells, John R.; Smith, Amanda M.; Bellchambers, Helen M.; Sridhar, Arthi; Ware, Stephanie M.; Pediatrics, School of MedicineFOXJ1 is expressed in ciliated cells of the airways, testis, oviduct, central nervous system and the embryonic left-right organizer. Ablation or targeted mutation of Foxj1 in mice, zebrafish and frogs results in loss of ciliary motility and/or reduced length and number of motile cilia, affecting the establishment of the left-right axis. In humans, heterozygous pathogenic variants in FOXJ1 cause ciliopathy leading to situs inversus, obstructive hydrocephalus and chronic airway disease. Here, we report a novel truncating FOXJ1 variant (c.784_799dup; p.Glu267Glyfs*12) identified by clinical exome sequencing from a patient with isolated congenital heart defects (CHD) which included atrial and ventricular septal defects, double outlet right ventricle (DORV) and transposition of the great arteries. Functional experiments show that FOXJ1 c.784_799dup; p.Glu267Glyfs*12, unlike FOXJ1, fails to induce ectopic cilia in frog epidermis in vivo or to activate the ADGB promoter, a downstream target of FOXJ1 in cilia, in transactivation assays in vitro. Variant analysis of patients with heterotaxy or heterotaxy-related CHD indicates that pathogenic variants in FOXJ1 are an infrequent cause of heterotaxy. Finally, we characterize embryonic-stage CHD in Foxj1 loss-of-function mice, demonstrating randomized heart looping. Abnormal heart looping includes reversed looping (dextrocardia), ventral looping and no looping/single ventricle hearts. Complex CHDs revealed by histological analysis include atrioventricular septal defects, DORV, single ventricle defects as well as abnormal position of the great arteries. These results indicate that pathogenic variants in FOXJ1 can cause isolated CHD.Item Loss of Zic3 impairs planar cell polarity leading to abnormal left-right signaling, heart defects and neural tube defects(Oxford University Press, 2021) Bellchambers, Helen M.; Ware, Stephanie M.; Pediatrics, School of MedicineLoss of function of ZIC3 causes heterotaxy (OMIM #306955), a disorder characterized by organ laterality defects including complex heart defects. Studies using Zic3 mutant mice have demonstrated that loss of Zic3 causes heterotaxy due to defects in establishment of left-right (LR) signaling, but the mechanistic basis for these defects remains unknown. Here, we demonstrate Zic3 null mice undergo cilia positioning defects at the embryonic node consistent with impaired planar cell polarity (PCP). Cell-based assays demonstrate that ZIC3 must enter the nucleus to regulate PCP and identify multiple critical ZIC3 domains required for regulation of PCP signaling. Furthermore, we show that Zic3 displays a genetic interaction with the PCP membrane protein Vangl2 and the PCP effector genes Rac1 and Daam1 resulting in increased frequency and severity of neural tube and heart defects. Gene and protein expression analyses indicate that Zic3 null embryos display disrupted expression of PCP components and reduced phosphorylation of the core PCP protein DVL2 at the time of LR axis determination. These results demonstrate that ZIC3 interacts with PCP signaling during early development, identifying a novel role for this transcription factor, and adding additional evidence about the importance of PCP function for normal LR patterning and subsequent heart development.