ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Heterologous expression"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Molecular cloning, expression and biochemical characterization of periplasmic nitrate reductase from Campylobacter jejuni
    (Oxford University Press, 2018-08-01) Mintmier, Breeanna; McGarry, Jennifer M.; Sparacino-Watkins, Courtney E.; Sallmen, Joseph; Fischer-Schrader, Katrin; Magalon, Axel; McCormick, Joseph R.; Stolz, John F.; Schwarz, Günter; Bain, Daniel J.; Basu, Partha; Chemistry and Chemical Biology, School of Science
    Campylobacter jejuni, a human gastrointestinal pathogen, uses nitrate for growth under microaerophilic conditions using periplasmic nitrate reductase (Nap). The catalytic subunit, NapA, contains two prosthetic groups, an iron sulfur cluster and a molybdenum cofactor. Here we describe the cloning, expression, purification, and Michaelis-Menten kinetics (kcat of 5.91 ± 0.18 s-1 and a KM (nitrate) of 3.40 ± 0.44 μM) in solution using methyl viologen as an electron donor. The data suggest that the high affinity of NapA for nitrate could support growth of C. jejuni on nitrate in the gastrointestinal tract. Site-directed mutagenesis was used and the codon for the molybdenum coordinating cysteine residue has been exchanged for serine. The resulting variant NapA is 4-fold less active than the native enzyme confirming the importance of this residue. The properties of the C. jejuni enzyme reported here represent the first isolation and characterization of an epsilonproteobacterial NapA. Therefore, the fundamental knowledge of Nap has been expanded.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University