- Browse by Subject
Browsing by Subject "Heterogeneous"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer(BioMed Central, 2016-08-22) Jiang, Guanglong; Zhang, Shijun; Yazdanparast, Aida; Li, Meng; Pawar, Aniruddha Vikram; Liu, Yunlong; Inavolu, Sai Mounika; Cheng, Lijun; Department of Medical and Molecular Genetics, IU School of MedicineBackground: Proper cell models for breast cancer primary tumors have long been the focal point in the cancer’s research. The genomic comparison between cell lines and tumors can investigate the similarity and dissimilarity and help to select right cell model to mimic tumor tissues to properly evaluate the drug reaction in vitro. In this paper, a comprehensive comparison in copy number variation (CNV), mutation, mRNA expression and protein expression between 68 breast cancer cell lines and 1375 primary breast tumors is conducted and presented. Results: Using whole genome expression arrays, strong correlations were observed between cells and tumors. PAM50 gene expression differentiated them into four major breast cancer subtypes: Luminal A and B, HER2amp, and Basal-like in both cells and tumors partially. Genomic CNVs patterns were observed between tumors and cells across chromosomes in general. High C > T and C > G trans-version rates were observed in both cells and tumors, while the cells had slightly higher somatic mutation rates than tumors. Clustering analysis on protein expression data can reasonably recover the breast cancer subtypes in cell lines and tumors. Although the drug-targeted proteins ER/PR and interesting mTOR/GSK3/TS2/PDK1/ER_P118 cluster had shown the consistent patterns between cells and tumor, low protein-based correlations were observed between cells and tumors. The expression consistency of mRNA verse protein between cell line and tumors reaches 0.7076. These important drug targets in breast cancer, ESR1, PGR, HER2, EGFR and AR have a high similarity in mRNA and protein variation in both tumors and cell lines. GATA3 and RP56KB1 are two promising drug targets for breast cancer. A total score developed from the four correlations among four molecular profiles suggests that cell lines, BT483, T47D and MDAMB453 have the highest similarity with tumors. Conclusions: The integrated data from across these multiple platforms demonstrates the existence of the similarity and dissimilarity of molecular features between breast cancer tumors and cell lines. The cell lines only mirror some but not all of the molecular properties of primary tumors. The study results add more evidence in selecting cell line models for breast cancer research.Item Design and Implementation of Web-based Data and Network Management System for Heterogeneous Wireless Sensor Networks(2011-03-09) Yu, Qun; Liang, Yao; Zou, Xukai; Xia, YuniToday, Wireless Sensor Networks (WSNs) are forming an exciting new area to have dramatic impacts on science and engineering innovations. New WSN-based technologies, such as body sensor networks in medical and health care and environmental monitoring sensor networks, are emerging. Sensor networks are quickly becoming a flexible, inexpensive, and reliable platform to provide solutions for a wide variety of applications in real-world settings. The increase in the proliferation of sensor networks has paralleled the use of more heterogeneous systems in deployment. In this thesis, our work attempts to develop a new network management and data collection framework for heterogeneous wireless sensor networks called as Heterogeneous Wireless Sensor Networks Management System (H-WSNMS), which enables to manage and operate various sensor network systems with unified control and management services and interface. The H-WSNMS framework aims to provide a scheme to manage, query, and interact with sensor network systems. By introducing the concept of Virtual Command Set (VCS), a series of unified application interfaces and Metadata (XML files) across multiple WSNs are designed and implement the scalability and flexibility of the management functions for heterogeneous wireless sensor networks, which is demonstrated though through a series of web-based WSN management Applications such as Monitoring, Configuration, Reprogram, Data Collection and so on. The tests and application trials confirm the feasibility of our approach but also still reveal a number of challenges to be taken into account when deploying wireless sensor and actuator networks at industrial sites, which will be considered by our future research work.