- Browse by Subject
Browsing by Subject "Hereditary hemorrhagic telangiectasia"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A case report of hepatopulmonary syndrome in hereditary hemorrhagic telangiectasia (HHT): Not all right-to-left shunting in HHT is due to pulmonary arteriovenous malformations(Wolters Kluwer, 2018-08) Krishnan, Sheila; Lahm, Tim; Medicine, School of MedicineRATIONALE: Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by abnormal vessel growth that results in telangiectasias and arteriovenous malformations (AVMs) in the skin, mucosa, and viscera. Up to 30% of patients with HHT exhibit pulmonary AVMs (PAVMs), clinically manifesting as right-to-left shunting and hypoxemia. PATIENT CONCERNS: We report an unusual and novel case of a patient with HHT who lacked clinical sequelae of portal hypertension but presented to clinic with hypoxemia without dyspnea. DIAGNOSES: Diagnostic workup revealed noncardiac right-to-left shunting due to hepatopulmonary syndrome (HPS) from HHT-induced portal hypertension rather than PAVMs. The diagnosis was confirmed by the absence of PAVMs on chest computed tomography and evidence of elevated portal pressures as noted by the presence of small esophageal varices on upper endoscopy and histologic findings on liver biopsy. INTERVENTION: Due to the patient's mild symptoms, no further intervention was required. He was closely followed up in the outpatient setting for changes in symptoms and underwent annual screening for development of PAVMs. OUTCOMES: The patient continues to do well clinically. He has not experienced worsening hypoxemia or dyspnea and has not developed PAVMs. LESSONS: Given that management of hypoxemia in HPS drastically differs from that of hypoxemia due to PAVMs, this case demonstrates the importance of evaluating HHT patients for HPS if they exhibit impaired oxygenation and noncardiac right-to-leftshunting in the setting of hepatic arteriovenous shunting.Item Functional filter for whole-genome sequencing data identifies HHT and stress-associated non-coding SMAD4 polyadenylation site variants >5 kb from coding DNA(Elsevier, 2023) Xiao, Sihao; Kai, Zhentian; Murphy, Daniel; Li, Dongyang; Patel, Dilip; Bielowka, Adrianna M.; Bernabeu-Herrero, Maria E.; Abdulmogith, Awatif; Mumford, Andrew D.; Westbury, Sarah K.; Aldred, Micheala A.; Vargesson, Neil; Caulfield, Mark J.; Genomics England Research Consortium; Shovlin, Claire L.; Medicine, School of MedicineDespite whole-genome sequencing (WGS), many cases of single-gene disorders remain unsolved, impeding diagnosis and preventative care for people whose disease-causing variants escape detection. Since early WGS data analytic steps prioritize protein-coding sequences, to simultaneously prioritize variants in non-coding regions rich in transcribed and critical regulatory sequences, we developed GROFFFY, an analytic tool that integrates coordinates for regions with experimental evidence of functionality. Applied to WGS data from solved and unsolved hereditary hemorrhagic telangiectasia (HHT) recruits to the 100,000 Genomes Project, GROFFFY-based filtration reduced the mean number of variants/DNA from 4,867,167 to 21,486, without deleting disease-causal variants. In three unsolved cases (two related), GROFFFY identified ultra-rare deletions within the 3' untranslated region (UTR) of the tumor suppressor SMAD4, where germline loss-of-function alleles cause combined HHT and colonic polyposis (MIM: 175050). Sited >5.4 kb distal to coding DNA, the deletions did not modify or generate microRNA binding sites, but instead disrupted the sequence context of the final cleavage and polyadenylation site necessary for protein production: By iFoldRNA, an AAUAAA-adjacent 16-nucleotide deletion brought the cleavage site into inaccessible neighboring secondary structures, while a 4-nucleotide deletion unfolded the downstream RNA polymerase II roadblock. SMAD4 RNA expression differed to control-derived RNA from resting and cycloheximide-stressed peripheral blood mononuclear cells. Patterns predicted the mutational site for an unrelated HHT/polyposis-affected individual, where a complex insertion was subsequently identified. In conclusion, we describe a functional rare variant type that impacts regulatory systems based on RNA polyadenylation. Extension of coding sequence-focused gene panels is required to capture these variants.Item Identification and validation of a novel pathogenic variant in GDF2 (BMP9) responsible for hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations(Wiley, 2022) Balachandar, Srimmitha; Graves, Tamara J.; Shimonty, Anika; Kerr, Katie; Kilner, Jill; Xiao, Sihao; Slade, Richard; Sroya, Manveer; Alikian, Mary; Curetean, Emanuel; Thomas, Ellen; McConnell, Vivienne P. M.; McKee, Shane; Boardman-Pretty, Freya; Devereau, Andrew; Fowler, Tom A.; Caulfield, Mark J.; Alton, Eric W.; Ferguson, Teena; Redhead, Julian; McKnight, Amy J.; Thomas, Geraldine A.; Genomics England Research Consortium; Aldred, Micheala A.; Shovlin, Claire L.; Medicine, School of MedicineHereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant multisystemic vascular dysplasia, characterized by arteriovenous malformations (AVMs), mucocutaneous telangiectasia and nosebleeds. HHT is caused by a heterozygous null allele in ACVRL1, ENG, or SMAD4, which encode proteins mediating bone morphogenetic protein (BMP) signaling. Several missense and stop-gain variants identified in GDF2 (encoding BMP9) have been reported to cause a vascular anomaly syndrome similar to HHT, however none of these patients met diagnostic criteria for HHT. HHT families from UK NHS Genomic Medicine Centres were recruited to the Genomics England 100,000 Genomes Project. Whole genome sequencing and tiering protocols identified a novel, heterozygous GDF2 sequence variant in all three affected members of one HHT family who had previously screened negative for ACVRL1, ENG, and SMAD4. All three had nosebleeds and typical HHT telangiectasia, and the proband also had severe pulmonary AVMs from childhood. In vitro studies showed the mutant construct expressed the proprotein but lacked active mature BMP9 dimer, suggesting the mutation disrupts correct cleavage of the protein. Plasma BMP9 levels in the patients were significantly lower than controls. In conclusion, we propose that this heterozygous GDF2 variant is a rare cause of HHT associated with pulmonary AVMs.