- Browse by Subject
Browsing by Subject "Hepatocyte growth factor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Adipocytes enhance murine pancreatic cancer growth via a hepatocyte growth factor (HGF)-mediated mechanism(Elsevier, 2016-04) Ziegler, Kathryn M.; Considine, Robert V.; True, Eben; Swartz-Basile, Deborah A.; Pitt, Henry A.; Zyromski, Nicholas J.; Department of Surgery, IU School of MedicineINTRODUCTION: Obesity accelerates the development and progression of pancreatic cancer, though the mechanisms underlying this association are unclear. Adipocytes are biologically active, producing factors such as hepatocyte growth factor (HGF) that may influence tumor progression. We therefore sought to test the hypothesis that adipocyte-secreted factors including HGF accelerate pancreatic cancer cell proliferation. MATERIAL AND METHODS: Murine pancreatic cancer cells (Pan02 and TGP-47) were grown in a) conditioned medium (CM) from murine F442A preadipocytes, b) HGF-knockdown preadipocyte CM, c) recombinant murine HGF at increasing doses, and d) CM plus HGF-receptor (c-met) inhibitor. Cell proliferation was measured using the MTT assay. ANOVA and t-test were applied; p < 0.05 considered significant. RESULTS: Wild-type preadipocyte CM accelerated Pan02 and TGP-47 cell proliferation relative to control (59 ± 12% and 34 ± 12%, p < 0.01, respectively). Knockdown of preadipocyte HGF resulted in attenuated proliferation vs. wild type CM in Pan02 cells (35 ± 5% vs. 68 ± 14% greater than control; p < 0.05), but proliferation in TGP-47 cells remained unchanged. Recombinant HGF dose-dependently increased Pan02, but not TGP-47, proliferation (p < 0.05). Inhibition of HGF receptor, c-met, resulted in attenuated proliferation versus control in Pan02 cells, but not TGP-47 cells. CONCLUSIONS: These experiments demonstrate that adipocyte-derived factors accelerate murine pancreatic cancer proliferation. In the case of Pan02 cells, HGF is responsible, in part, for this proliferation.Item Modular crosslinking of gelatin based thiol-norbornene hydrogels for in vitro 3D culture of hepatic cells(ACS Biomaterials Science and Engineering, 2015-10-21) Greene, Tanja L.; Lin, Chien-Chi; Xie, Dong; Dai, Guoli; Yoshida, KenAs liver disease becomes more prevalent, the development of an in vitro culture system to study disease progression and its repair mechanisms is essential. Typically, 2D cultures are used to investigate liver cell (e.g., hepatocyte) function in vitro; however, hepatocytes lose function rapidly when they were isolated from the liver. This has promoted researchers to develop 3D scaffolds to recreate the natural microenvironment of hepatic cells. For example, gelatin-based hydrogels have been increasingly used to promote cell fate processes in 3D. Most gelatin-based systems require the use of physical gelation or non-specific chemical crosslinking. Both of these methods yield gelatin hydrogels with highly interdependent material properties (e.g., bioactivity and matrix stiffness). The purpose of this thesis research was to prepare modularly crosslinked gelatin-based hydrogels for studying the influence of independent matrix properties on hepatic cell fate in 3D. The first objective was to establish tunable gelatin-based thiol-norbornene hydrogels and to demonstrate that the mechanical and biological properties of gelatin hydrogels can be independently adjusted. Furthermore, norbornene and heparin dual-functionalized gelatin (i.e., GelNB-Hep) was prepared and used to sequester and slowly release hepatocyte growth factor (HGF). The second objective was to investigate the viability and functions of hepatocytes encapsulated in gelatin-based hydrogels. Hepatocellular carcinoma cells, Huh7, were used as a model cell type to demonstrate the cytocompatibility of the system. The properties of GelNB hydrogels were modularly tuned to systematically evaluate the effects of matrix properties on cell viability and functions, including CYP3A4 activity and urea secretion. The last objective was to examine the effect of heparin immobilization on hepatocyte viability and functions. The conjugation of heparin onto GelNB led to suppressed Huh7 cell metabolic activity and improved hepatocellular functions. This hybrid hydrogel system should provide a promising 3D cell culture platform for studying cell fate processes.