- Browse by Subject
Browsing by Subject "Hepatitis B virus"
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item Biogenesis and molecular characteristics of serum hepatitis B virus RNA(Public Library of Science, 2020-10-20) Shen, Sheng; Xie, Zhanglian; Cai, Dawei; Yu, Xiaoyang; Zhang, Hu; Kim, Elena S.; Zhou, Bin; Hou, Jinlin; Zhang, Xiaoyong; Huang, Qi; Sun, Jian; Guo, Haitao; Medicine, School of MedicineHBV is an enveloped DNA virus that replicates its DNA genome via reverse transcription of a pregenomic (pg) RNA intermediate in hepatocytes. Interestingly, HBV RNA can be detected in virus-like particles in chronic hepatitis B (CHB) patient serum and has been utilized as a biomarker for intrahepatic cccDNA activity in treated patients. However, the biogenesis and molecular characteristics of serum HBV RNA remain to be fully defined. In this study, we found that the encapsidated serum HBV RNA predominately consists of pgRNA, which are detergent- and ribonuclease-resistant. Through blocking HBV DNA replication without affecting pgRNA encapsidation by using the priming-defective HBV mutant Y63D or 3TC treatment, we demonstrated that the cell culture supernatant contains a large amount of pgRNA-containing nonenveloped capsids and a minor population of pgRNA-containing virions. The formation of pgRNA-virion requires both capsid assembly and viral envelope proteins, which can be inhibited by capsid assembly modulators and an envelope–knockout mutant, respectively. Furthermore, the pgRNA-virion utilizes the multivesicular body pathway for egress, in a similar way as DNA-virion morphogenesis. Northern blotting, RT-PCR, and 3’ RACE assays revealed that serum/supernatant HBV pgRNA are mainly spliced and devoid of the 3’-terminal sequences. Furthermore, pgRNA-virion collected from cells treated with a reversible HBV priming inhibitor L-FMAU was unable to establish infection in HepG2-NTCP cells. In summary, serum HBV RNA is secreted in noninfectious virion-like particle as spliced and poly(A)-free pgRNA. Our study will shed light on the molecular biology of serum HBV RNA in HBV life cycle, and aid the development of serum HBV RNA as a novel biomarker for CHB diagnosis and treatment prognosis.Item Characterization of the Termini of Cytoplasmic Hepatitis B Virus Deproteinated Relaxed Circular DNA(American Society for Microbiology, 2020-12-09) Cai, Dawei; Yan, Ran; Xu, Jerry Z.; Zhang, Hu; Shen, Sheng; Mitra, Bidisha; Marchetti, Alexander; Kim, Elena S.; Guo, Haitao; Microbiology and Immunology, School of MedicineThe biosynthesis of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) requires the removal of the covalently linked viral polymerase from the 5' end of the minus strand [(-)strand] of viral relaxed circular DNA (rcDNA), which generates a deproteinated rcDNA (DP-rcDNA) intermediate. In the present study, we systematically characterized the four termini of cytoplasmic HBV DP-rcDNA by 5'/3' rapid amplification of cDNA ends (RACE), 5' radiolabeling, and exonuclease digestion, which revealed the following observations: (i) DP-rcDNA and rcDNA possess an identical 3' end of (-)strand DNA; (ii) compared to rcDNA, DP-rcDNA has an extended but variable 3' end of plus strand [(+)strand] DNA, most of which is in close proximity to direct repeat 2 (DR2); (iii) DP-rcDNA exhibits an RNA primer-free 5' terminus of (+)strand DNA with either a phosphate or hydroxyl group; and (iv) the 5' end of the DP-rcDNA (-)strand is unblocked at nucleotide G1828, bearing a phosphate moiety, indicating the complete removal of polymerase from rcDNA via unlinking the tyrosyl-DNA phosphodiester bond during rcDNA deproteination. However, knockout of cellular 5' tyrosyl-DNA phosphodiesterase 2 (TDP2) did not markedly affect rcDNA deproteination or cccDNA formation. Thus, our work sheds new light on the molecular mechanisms of rcDNA deproteination and cccDNA biogenesis.IMPORTANCE The covalently closed circular DNA (cccDNA) is the persistent form of the hepatitis B virus (HBV) genome in viral infection and an undisputed antiviral target for an HBV cure. HBV cccDNA is converted from viral genomic relaxed circular DNA (rcDNA) through a complex process that involves removing the covalently bound viral polymerase from rcDNA, which produces a deproteinated-rcDNA (DP-rcDNA) intermediate for cccDNA formation. In this study, we characterized the four termini of cytoplasmic DP-rcDNA and compared them to its rcDNA precursor. While rcDNA and DP-rcDNA have an identical 3' terminus of (-)strand DNA, the 3' terminus of (+)strand DNA on DP-rcDNA is further elongated. Furthermore, the peculiarities on rcDNA 5' termini, specifically the RNA primer on the (+)strand and the polymerase on the (-)strand, are absent from DP-rcDNA. Thus, our study provides new insights into a better understanding of HBV rcDNA deproteination and cccDNA biosynthesis.Item Expansion, in vivo–ex vivo cycling, and genetic manipulation of primary human hepatocytes(National Academy of Sciences, 2020-01-08) Michailidis, Eleftherios; Vercauteren, Koen; Mancio-Silva, Liliana; Andrus, Linda; Jahan, Cyprien; Ricardo-Lax, Inna; Zou, Chenhui; Kabbani, Mohammad; Park, Paul; Quirk, Corrine; Pyrgaki, Christina; Razooky, Brandon; Verhoye, Lieven; Zoluthkin, Irene; Lu, Wei-Yu; Forbes, Stuart J.; Chiriboga, Luis; Theise, Neil D.; Herzog, Roland W.; Suemizu, Hiroshi; Schneider, William M.; Shlomai, Amir; Meuleman, Philip; Bhatia, Sangeeta N.; Rice, Charles M.; de Jong, Ype P.; Pediatrics, School of MedicinePrimary human hepatocytes (PHHs) are an essential tool for modeling drug metabolism and liver disease. However, variable plating efficiencies, short lifespan in culture, and resistance to genetic manipulation have limited their use. Here, we show that the pyrrolizidine alkaloid retrorsine improves PHH repopulation of chimeric mice on average 10-fold and rescues the ability of even poorly plateable donor hepatocytes to provide cells for subsequent ex vivo cultures. These mouse-passaged (mp) PHH cultures overcome the marked donor-to-donor variability of cryopreserved PHH and remain functional for months as demonstrated by metabolic assays and infection with hepatitis B virus and Plasmodium falciparum. mpPHH can be efficiently genetically modified in culture, mobilized, and then recultured as spheroids or retransplanted to create highly humanized mice that carry a genetically altered hepatocyte graft. Together, these advances provide flexible tools for the study of human liver disease and evaluation of hepatocyte-targeted gene therapy approaches.Item Hepatitis B Virus Precore Protein p22 Inhibits Alpha Interferon Signaling by Blocking STAT Nuclear Translocation(American Society for Microbiology, 2019-07-01) Mitra, Bidisha; Wang, Jinyu; Kim, Elena S.; Mao, Richeng; Dong, Dong; Liu, Yuanjie; Zhang, Jiming; Guo, Haitao; Microbiology and Immunology, School of MedicineAntagonism of host immune defenses against hepatitis B virus (HBV) infection by the viral proteins is speculated to cause HBV persistence and the development of chronic hepatitis. The circulating hepatitis B e antigen (HBeAg, p17) is known to manipulate host immune responses to assist in the establishment of persistent viral infection, and HBeAg-positive (HBeAg+) patients respond less effectively to IFN-α therapy than do HBeAg-negative (HBeAg−) patients in clinical practice. However, the function(s) of the intracellular form of HBeAg, previously reported as the precore protein intermediate (p22) without the N-terminal signal peptide, remains elusive. Here, we report that the cytosolic p22 protein, but not the secreted HBeAg, significantly reduces interferon-stimulated response element (ISRE) activity and the expression of interferon-stimulated genes (ISGs) upon alpha interferon (IFN-α) stimulation in cell cultures. In line with this, HBeAg+ patients exhibit weaker induction of ISGs in their livers than do HBeAg− patients upon IFN-α therapy. Mechanistically, while p22 does not alter the total STAT1 or pSTAT1 levels in cells treated with IFN-α, it blocks the nuclear translocation of pSTAT1 by interacting with the nuclear transport factor karyopherin α1 through its C-terminal arginine-rich domain. In summary, our study suggests that HBV precore protein, specifically the p22 form, impedes JAK-STAT signaling to help the virus evade the host innate immune response and, thus, causes resistance to IFN therapy. IMPORTANCE Chronic hepatitis B virus (HBV) infection continues to be a major global health concern, and patients who fail to mount an efficient immune response to clear the virus will develop a life-long chronic infection that can progress to chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma. There is no definite cure for chronic hepatitis B, and alpha interferon (IFN-α) is the only available immunomodulatory drug, to which only a minority of chronic patients are responsive, with hepatitis B e antigen (HBeAg)-negative patients responding better than HBeAg-positive patients. We herein report that the intracellular HBeAg, also known as precore or p22, inhibits the antiviral signaling of IFN-α, which sheds light on the enigmatic function of precore protein in shaping HBV chronicity and provides a perspective toward areas that need to be further studied to make the current therapy better until a cure is achieved.Item Hepatitis B Virus Reactivation in Cancer Patients Receiving Direct-Acting Antivirals for Hepatitis C Virus Infection(Wiley, 2021) Pritchard, Haley; Hwang, Jessica P.; Angelidakis, Georgios; Yibirin, Marcel; Wang, Lan; Miller, Ethan; Torres, Harrys A.; Medicine, School of MedicineDirect-acting antivirals (DAAs) against hepatitis C virus (HCV) infection can cause hepatitis B virus (HBV) reactivation in HBV/HCV co-infected patients. Cancer patients undergoing immunosuppressant treatment or chemotherapy are at risk for HBV reactivation. To our knowledge, no prospective studies have examined the risk of HBV reactivation during DAA treatment for HCV infection in cancer patients with HBV/HCV co-infection. Here, we report the results of one such study. In a prospective observational study, we enrolled HCV-infected cancer patients undergoing DAA treatment at The University of Texas MD Anderson Cancer Center between January 2015 and March 2018. Data regarding demographics, cancer history, and prior HCV treatment history were collected. Patients were assessed for HBV status before DAA treatment and for HBV-related outcomes, including HBV reactivation, hepatitis flare, and HBV-associated hepatitis, during DAA treatment. Demographic and treatment variables were analyzed using descriptive statistics. One hundred sixty-six patients were analyzed. Forty-eight patients received systemic chemotherapy within 6 months before to 6 months after treatment with DAAs. Ledipasvir plus sofosbuvir was the most common DAA regimen, administered to 88 patients (53%). Fifty-one patients (31%) had past HBV infection, and 4 (2.4%) had chronic HBV infection. No patient experienced HBV reactivation, hepatitis flare, or HBV-associated hepatitis induced by DAA treatment. In HCV-infected cancer patients, DAA treatment is safe regardless of whether patients have past or chronic HBV infection. However, HBV screening is still recommended before the initiation of and during DAA treatment, as is anti-HBV prophylactic treatment in selected cases.Item Identification of Compounds Targeting Hepatitis B Virus Core Protein Dimerization through a Split Luciferase Complementation Assay(American Society for Microbiology, 2018-11-26) Wei, Xia-Fei; Gan, Chun-Yang; Cui, Jing; Luo, Ying-Ying; Cai, Xue-Fei; Yuan, Yi; Shen, Jing; Li, Zhi-Ying; Zhang, Wen-Lu; Long, Quan-Xin; Hu, Yuan; Chen, Juan; Tang, Ni; Guo, Haitao; Huang, Ai-Long; Hu, Jie-Li; Microbiology and Immunology, School of MedicineThe capsid of the hepatitis B virus is an attractive antiviral target for developing therapies against chronic hepatitis B infection. Currently available core protein allosteric modulators (CpAMs) mainly affect one of the two major types of protein-protein interactions involved in the process of capsid assembly, namely, the interaction between the core dimers. Compounds targeting the interaction between two core monomers have not been rigorously screened due to the lack of screening models. We report here a cell-based assay in which the formation of core dimers is indicated by split luciferase complementation (SLC). Making use of this model, 2 compounds, Arbidol (umifenovir) and 20-deoxyingenol, were identified from a library containing 672 compounds as core dimerization regulators. Arbidol and 20-deoxyingenol inhibit the hepatitis B virus (HBV) DNA replication in vitro by decreasing and increasing the formation of core dimer and capsid, respectively. Our results provided a proof of concept for the cell model to be used to screen new agents targeting the step of core dimer and capsid formation.Item The Interferon-Inducible Protein Tetherin Inhibits Hepatitis B Virus Virion Secretion(American Society for Microbiology, 2015-09-15) Yan, Ran; Zhao, Xuesen; Cai, Dawei; Liu, Yuanjie; Block, Timothy M.; Guo, Ju-Tao; Guo, Haitao; Microbiology and Immunology, School of MedicineInterferon alpha (IFN-α) is an approved medication for chronic hepatitis B therapy. Besides acting as an immunomodulator, IFN-α elicits a pleiotropic antiviral state in hepatitis B virus (HBV)-infected hepatocytes, but whether or not IFN-α impedes the late steps of the HBV life cycle, such as HBV secretion, remains elusive. Here we report that IFN-α treatment of HepAD38 cells with established HBV replication selectively reduced HBV virion release without altering intracellular viral replication or the secretion of HBV subviral particles and nonenveloped capsids. In search of the interferon-stimulated gene(s) that is responsible for the reduction of HBV virion release, we found that tetherin, a broad-spectrum antiviral transmembrane protein that inhibits the egress of a variety of enveloped viruses, was highly induced by IFN-α in HepAD38 cells and in primary human hepatocytes. We further demonstrated that the expression of full-length tetherin, but not the C-terminal glycosylphosphatidylinositol (GPI) anchor-truncated form, inhibited HBV virion egress from HepAD38 cells. In addition, GPI anchor-truncated tetherin exhibited a dominant-negative effect and was incorporated into the liberated virions. We also found colocalization of tetherin and HBV L protein at the intracellular multivesicular body, where the budding of HBV virions takes place. In line with this, electron microscopy demonstrated that HBV virions were tethered in the lumen of the cisterna membrane under tetherin expression. Finally, knockdown of tetherin or overexpression of dominant negative tetherin attenuated the IFN-α-mediated reduction of HBV virion release. Taken together, our study suggests that IFN-α inhibits HBV virion egress from hepatocytes through the induction of tetherin. IMPORTANCE: Tetherin is a host restriction factor that blocks the egress of a variety of enveloped viruses through tethering the budding virions on the cell surface with its membrane anchor domains. Here we report that interferon directly and selectively inhibits the secretion of HBV virions, but not subviral particles or nonenveloped capsids, through the induction of tetherin in hepatocyte-derived cells. The antiviral function of tetherin requires the carboxyl-terminal GPI anchor, while the GPI anchor deletion mutant exhibits dominant negative activity and attaches to liberated HBV virions. Consistent with the fact that HBV is an intracellular budding virus, microscopy analyses demonstrated that the tethering of HBV virions occurs in the intracellular cisterna and that tetherin colocalizes with HBV virions on the multivesicular body, which is the HBV virion budding site. Our study not only expands the antiviral spectrum of tetherin but also sheds light on the mechanisms of interferon-elicited anti-HBV responses.Item Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA(PLOS, 2017-04-11) Liu, Yuanjie; Nie, Hui; Mao, Richeng; Mitra, Bidisha; Cai, Dawei; Yan, Ran; Guo, Ju-Tao; Block, Timothy M.; Mechti, Nadir; Guo, Haitao; Microbiology and Immunology, School of MedicineHepatitis B virus (HBV) replicates its DNA genome through reverse transcription of a viral RNA pregenome. We report herein that the interferon (IFN) stimulated exoribonuclease gene of 20 KD (ISG20) inhibits HBV replication through degradation of HBV RNA. ISG20 expression was observed at basal level and was highly upregulated upon IFN treatment in hepatocytes, and knock down of ISG20 resulted in elevation of HBV replication and attenuation of IFN-mediated antiviral effect. The sequence element conferring the susceptibility of HBV RNA to ISG20-mediated RNA degradation was mapped at the HBV RNA terminal redundant region containing epsilon (ε) stem-loop. Furthermore, ISG20-induced HBV RNA degradation relies on its ribonuclease activity, as the enzymatic inactive form ISG20D94G was unable to promote HBV RNA decay. Interestingly, ISG20D94G retained antiviral activity against HBV DNA replication by preventing pgRNA encapsidation, resulting from a consequence of ISG20-ε interaction. This interaction was further characterized by in vitro electrophoretic mobility shift assay (EMSA) and ISG20 was able to bind HBV ε directly in absence of any other cellular proteins, indicating a direct ε RNA binding capability of ISG20; however, cofactor(s) may be required for ISG20 to efficiently degrade ε. In addition, the lower stem portion of ε is the major ISG20 binding site, and the removal of 4 base pairs from the bottom portion of ε abrogated the sensitivity of HBV RNA to ISG20, suggesting that the specificity of ISG20-ε interaction relies on both RNA structure and sequence. Furthermore, the C-terminal Exonuclease III (ExoIII) domain of ISG20 was determined to be responsible for interacting with ε, as the deletion of ExoIII abolished in vitro ISG20-ε binding and intracellular HBV RNA degradation. Taken together, our study sheds light on the underlying mechanisms of IFN-mediated HBV inhibition and the antiviral mechanism of ISG20 in general.Item Metabolism and function of hepatitis B virus cccDNA: Implications for the development of cccDNA-targeting antiviral therapeutics.(Elsevier, 2015-10) Guo, Ju-Tao; Guo, Haitao; Department of Microbiology and Immunology, IU School of MedicinePersistent hepatitis B virus (HBV) infection relies on the stable maintenance and proper functioning of a nuclear episomal form of the viral genome called covalently closed circular (ccc) DNA. One of the major reasons for the failure of currently available antiviral therapeutics to achieve a cure of chronic HBV infection is their inability to eradicate or inactivate cccDNA. In this review article, we summarize our current understanding of cccDNA metabolism in hepatocytes and the modulation of cccDNA by host pathophysiological and immunological cues. Perspectives on the future investigation of cccDNA biology, as well as strategies and progress in therapeutic elimination and/or transcriptional silencing of cccDNA through rational design and phenotypic screenings, are also discussed. This article forms part of a symposium in Antiviral Research on “An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B.”Item Naturally Occurring Core Protein Mutations Compensate for the Reduced Replication Fitness of a Lamivudine-Resistant HBV Isolate(Elsevier Masson, 2019-05) Zhang, Yongmei; Zhang, Hu; Zhang, Junjie; Zhang, Jiming; Guo, Haitao; Microbiology and Immunology, School of MedicineHepatitis B virus (HBV) replicates its DNA genome through reverse transcription of an RNA intermediate. The lack of proofreading capacity of the viral DNA polymerase results in a high mutation rate of HBV genome. Under the selective pressure created by the nucleos(t)ide analogue (NA) antiviral drugs, viruses with resistance mutations are selected. However, the replication fitness of NA-resistant mutants is markedly reduced compared to wild-type. Compensatory mutations in HBV polymerase, which restore the viral replication capacity, have been reported to arise under continuous treatment with lamivudine (LMV). We have previously identified a highly replicative LMV-resistant HBV isolate from a chronic hepatitis B patient experiencing acute disease exacerbation. Besides the common YMDD drug-resistant mutations, this isolate possesses multiple additional mutations in polymerase and core regions. The transcomplementation assay demonstrated that the enhanced viral replication is due to the mutations of core protein. Further mutagenesis study revealed that the P5T mutation of core protein plays an important role in the enhanced viral replication through increasing the levels of capsid formation and pregenomic RNA encapsidation. However, the LMV-resistant virus harboring compensatory core mutations remains sensitive to capsid assembly modulators (CpAMs). Taken together, our study suggests that the enhanced HBV nucleocapsid formation resulting from core mutations represents an important viral strategy to surmount the antiviral drug pressure and contribute to viral pathogenesis, and CpAMs hold promise for developing the combinational antiviral therapy for hepatitis B.