- Browse by Subject
Browsing by Subject "Hepatic fibrosis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Association of Histologic Disease Activity With Progression of Nonalcoholic Fatty Liver Disease(JAMA Network, 2019-10-02) Kleiner, David E.; Brunt, Elizabeth M.; Wilson, Laura A.; Behling, Cynthia; Guy, Cynthia; Contos, Melissa; Cummings, Oscar; Yeh, Matthew; Gill, Ryan; Chalasani, Naga; Neuschwander-Tetri, Brent A.; Diehl, Anna Mae; Dasarathy, Srinivasan; Terrault, Norah; Kowdley, Kris; Loomba, Rohit; Belt, Patricia; Tonascia, James; Lavine, Joel E.; Sanyal, Arun J.; Nonalcoholic Steatohepatitis Clinical Research Network; Medicine, School of MedicineImportance: The histologic evolution of the full spectrum of nonalcoholic fatty liver disease (NAFLD) and factors associated with progression or regression remain to be definitively established. Objective: To evaluate the histologic evolution of NAFLD and the factors associated with changes in disease severity over time. Design, Setting, and Participants: A prospective cohort substudy from the Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN) NAFLD Database study, a noninterventional registry, was performed at 8 university medical research centers. Masked assessment of liver histologic specimens was performed, using a prespecified protocol to score individual biopsies. Participants included 446 adults with NAFLD enrolled in the NASH CRN Database studies between October 27, 2004, and September 13, 2013, who underwent 2 liver biopsies 1 or more year apart. Data analysis was performed from October 2016 to October 2018. Main Outcomes and Measures: Progression and regression of fibrosis stage, using clinical, laboratory, and histologic findings, including the NAFLD activity score (NAS) (sum of scores for steatosis, lobular inflammation, and ballooning; range, 0-8, with 8 indicating more severe disease). Results: A total of 446 adults (mean [SD] age, 47 [11] years; 294 [65.9%] women) with NAFLD (NAFL, 86 [19.3%]), borderline NASH (84 [18.8%]), and definite NASH (276 [61.9%]) were studied. Over a mean (SD) interval of 4.9 (2.8) years between biopsies, NAFL resolved in 11 patients (12.8%) and progressed to steatohepatitis in 36 patients (41.9%). Steatohepatitis resolved in 24 (28.6%) of the patients with borderline NASH and 61 (22.1%) of those with definite NASH. Fibrosis progression or regression by at least 1 stage occurred in 132 (30%) and 151 [34%] participants, respectively. Metabolic syndrome (20 [95%] vs 108 [72%]; P = .03), baseline NAS (mean [SD], 5.0 [1.4] vs 4.3 [1.6]; P = .005), and smaller reduction in NAS (-0.2 [2] vs -0.9 [2]; P < .001) were associated with progression to advanced (stage 3-4) fibrosis vs those without progression to stage 3 to 4 fibrosis. Fibrosis regression was associated with lower baseline insulin level (20 vs 33 μU/mL; P = .02) and decrease in all NAS components (steatosis grade -0.8 [0.1] vs -0.3 [0.9]; P < .001; lobular inflammation -0.5 [0.8] vs -0.2 [0.9]; P < .001; ballooning -0.7 [1.1] vs -0.1 [0.9]; P < .001). Only baseline aspartate aminotransferase (AST) levels were associated with fibrosis regression vs no change and progression vs no change on multivariable regression: baseline AST (regression: conditional odds ratio [cOR], 0.6 per 10 U/L AST; 95% CI, 0.4-0.7; P < .001; progression: cOR, 1.3; 95% CI, 1.1-1.5; P = .002). Changes in the AST level, alanine aminotransferase (ALT) level, and NAS were also associated with fibrosis regression and progression (ΔAST level: regression, cOR, 0.9; 95% CI, 0.6-1.2; P = .47; progression, cOR, 1.3; 95% CI, 1.0-1.6; P = .02; ΔALT level: regression, cOR, 0.7 per 10 U/L AST; 95% CI, 0.5-0.9; P = .002; progression, cOR, 1.0 per 10 U/L AST; 95% CI, 0.9-1.2; P = .93; ΔNAS: regression, cOR, 0.7; 95% CI, 0.6-0.9; P = .001; progression, cOR, 1.3; 95% CI, 1.1-1.5; P = .01). Conclusions and Relevance: Improvement or worsening of disease activity may be associated with fibrosis regression or progression, respectively, in NAFLD.Item Coordinated signaling of activating transcription factor 6α and inositol-requiring enzyme 1α regulates hepatic stellate cell-mediated fibrogenesis in mice(American Physiological Society, 2021) Xue, Fei; Lu, Jianwen; Buchl, Samuel C.; Sun, Liankang; Shah, Vijay H.; Malhi, Harmeet; Maiers, Jessica L.; Medicine, School of MedicineLiver injury and the unfolded protein response (UPR) are tightly linked, but their relationship differs with cell type and injurious stimuli. UPR initiation promotes hepatic stellate cell (HSC) activation and fibrogenesis, but the underlying mechanisms are unclear. Despite the complexity and overlap downstream of UPR transducers inositol-requiring protein 1α (IRE1α), activating transcription factor 6α (ATF6α), and protein kinase RNA-like ER kinase (PERK), previous research in HSCs primarily focused on IRE1α. Here, we investigated the fibrogenic role of ATF6α or PERK in vitro and HSC-specific UPR signaling in vivo. Overexpression of ATF6α, but not the PERK effector activating transcription factor 4 (ATF4), promoted HSC activation and fibrogenic gene transcription in immortalized HSCs. Furthermore, ATF6α inhibition through Ceapin-A7, or Atf6a deletion, disrupted transforming growth factor β (TGFβ)-mediated activation of primary human hepatic stellate cells (hHSCs) or murine hepatic stellate cells (mHSCs), respectively. We investigated the fibrogenic role of ATF6α in vivo through conditional HSC-specific Atf6a deletion. Atf6aHSCΔ/Δ mice displayed reduced fibrosis and HSC activation following bile duct ligation (BDL) or carbon tetrachloride (CCl4)-induced injury. The Atf6aHSCΔ/Δ phenotype differed from HSC-specific Ire1a deletion, as Ire1aHSCΔ/Δ mice showed reduced fibrogenic gene transcription but no changes in fibrosis compared with Ire1afl/fl mice following BDL. Interestingly, ATF6α signaling increased in Ire1aΔ/Δ HSCs, whereas IRE1α signaling was upregulated in Atf6aΔ/Δ HSCs. Finally, we asked whether co-deletion of Atf6a and Ire1a additively limits fibrosis. Unexpectedly, fibrosis worsened in Atf6aHSCΔ/ΔIre1aHSCΔ/Δ mice following BDL, and Atf6aΔ/ΔIre1aΔ/Δ mHSCs showed increased fibrogenic gene transcription. ATF6α and IRE1α individually promote fibrogenic transcription in HSCs, and ATF6α drives fibrogenesis in vivo. Unexpectedly, disruption of both pathways sensitizes the liver to fibrogenesis, suggesting that fine-tuned UPR signaling is critical for regulating HSC activation and fibrogenesis. NEW & NOTEWORTHY: ATF6α is a critical driver of hepatic stellate cell (HSC) activation in vitro. HSC-specific deletion of Atf6a limits fibrogenesis in vivo despite increased IRE1α signaling. Conditional deletion of Ire1α from HSCs limits fibrogenic gene transcription without impacting overall fibrosis. This could be due in part to observed upregulation of the ATF6α pathway. Dual loss of Atf6a and Ire1a from HSCs worsens fibrosis in vivo through enhanced HSC activation.