ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Heme oxygenase"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Leukocyte Expression of Heme Oxygenase-1 [hmox1] Varies Inversely with Severity of Tricuspid Regurgitation in Acute Pulmonary Embolism.
    (Elsevier, 2015-10) Kline, Jeffrey A.; Steuerwald, Nury M.; Watts, John A.; Courtney, Mark; Bonkovsky, Herbert L.; Department of Emergency Medicine, IU School of Medicine
    Objective: Pulmonary embolism (PE) can cause intracardiac hemolysis and increased plasma hemoglobin and arginase-1, which can worsen pulmonary vasoconstriction. We test the hypothesis that patients with PE that causes tricuspid regurgitation (TR), indicative of higher pulmonary arterial pressures, have decreased leukocyte expression of hmox-1 compared with patients with PE and no TR and patients without PE. Design: Prospective, noninterventional study. Patients: Normotensive patients with suspected PE (n=87) who underwent CT pulmonary angiography and transthoracic Doppler-echocardiography. Measurements: Significant TR was defined as a jet velocity > 2.7m/s. Leukocyte expression of hmox-1, haptoglobin, haptoglobin related gene, the haptoglobin receptor, CD163 and cox-2 genes were assessed by quantitative rtPCR, and the hmox-1 promoter was examined for the −413 A→T SNP and GT repeat polymorphisms. Results: Of the 44 (50%) with PE+, 22 had TR+, and their mean pulmonary vascular occlusion (39±32%) did not differ significantly from patients who were TR− (28±26%, P=0.15). Patients with PE+ and TR+ had significantly lower expression of hmox-1 and haptoglobin genes than patients without PE+ and no TR. Expression of hmox-1 varied inversely with TR velocity (r2=0.45, P<0.001) for PE+ (n=22) but not patients without PE. Hmox-1 expression did not vary significantly with genotype. Cox-2 did not differ between groups and had no correlation with TR. Conclusions: Severity of TR varied inversely with hmox-1 expression, suggesting that hmox-1 expression affects pulmonary vascular reactivity after PE.
  • Loading...
    Thumbnail Image
    Item
    The BRD4 Inhibitor I-BET-762 Reduces HO-1 Expression in Macrophages and the Pancreas of Mice
    (MDPI, 2024-09-16) Leal, Ana S.; Liby, Karen T.; Medicine, School of Medicine
    In pancreatic cancer, the tumor microenvironment (TME) accounts for up to 90% of the tumor mass. Pancreatitis, characterized by the increased infiltration of macrophages into the pancreas, is a known risk factor for pancreatic cancer. The NRF2 (nuclear factor erythroid 2-related factor 2) transcription factor regulates responses to oxidative stress and can promote cancer and chemoresistance. NRF2 also attenuates inflammation through the regulation of macrophage-specific genes. Heme oxygenase 1 (HO-1) is expressed by anti-inflammatory macrophages to degrade heme, and its expression is dependent on NRF2 translocation to the nucleus. In macrophages stimulated with conditioned media from pancreatic cancer cells, HO-1 protein levels increased, which correlated with higher NRF2 expression in the nuclear fraction. Significant differences in macrophage infiltration and HO-1 expression were detected in LSL-KrasG12D/+; Pdx-1-Cre (KC) mice, Nrf2 whole-body knockout (KO) mice and wildtype mice with pancreatitis. Since epigenetic modulation is a mechanism used by tumors to regulate the TME, using small molecules as epigenetic modulators to activate immune recognition is therapeutically desirable. When the bromodomain inhibitor I-BET-762 was used to treat macrophages or mice with pancreatitis, high levels of HO-1 were reduced. This study shows that bromodomain inhibitors can be used to prevent physiological responses to inflammation that promote tumorigenesis.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University