- Browse by Subject
Browsing by Subject "Hematopoietic cell transplantation"
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item Abstract 27: Physiologic Oxygen Expansion Enhances Lymphocyte and Neutrophil Recovery Following Transplantation(Oxford University Press, 2024-08-21) Gutch, Sarah; Ropa, Jim; Beasley, Lindsay; Whitacre, Grace; Van't Hof, Wouter; Capitano, Maegan; Medical and Molecular Genetics, School of MedicineIntroduction: Expeditious recovery of lymphocytes after hematopoietic cell transplantation is a major determinant of patient outcome. There are few efficient clinical therapies to enhance lymphocyte recovery, indicating a clear unmet need. Ex vivo expansion of cord blood (CB) units is an approved therapy to increase numbers of hematopoietic stem and progenitor cells, but impact on lymphocyte recovery remains uncertain. Moreover, culture in physioxic (physiological oxygen) conditions results in increased lymphoid-biased RNA levels. Objectives: We hypothesize that ex vivo expansion in physioxic conditions will increase lymphoid-biased cells and increase lymphocyte counts post-transplantation (PT). The objective of this study is to increase lymphocyte numbers following transplantation without sacrificing reconstitution of potent hematopoietic cells. Methods: Three independent transplants were conducted. 1) Murine lineage- bone marrow (BM) was expanded for 7 days then transplanted into lethally irradiated mice with/without additional common lymphoid progenitors (CLPs). 2) Murine lineage- BM was expanded in 1%, 3%, 5%, 14%, and 21% O2 for 7 days and transplanted into lethally irradiated mice. 3) Human CD34+ CB cells were expanded for 7 days in 1%, 3%, 5%, 14%, and 21% O2 and transplanted into NSG mice. Unexpanded BM or CB cells were used as controls. Results: Additional CLPs did not contribute to lymphocyte recovery. Mice transplanted with expanded BM had increased lymphocyte counts compared to transplantations with unexpanded BM at weeks 2 and 5 PT via complete blood count (CBC) and increased B-cell reconstitution in the spleen, BM, and peripheral blood (PB) at weeks 2, 5, and 8 PT. LSK (Lin- SCA1+ cKIT+) and neutrophil frequencies were increased at 3% O2 in the BM and 5% O2 in the PB, respectively. Compared to 21% O2, CB cells expanded at 1%, 3%, 5%, 14% O2 had increased neutrophil and lymphocyte frequencies in the PB at weeks 2 and 10, respectively, and demonstrated greater recovery than unexpanded at week 2. Discussion: Expansion increases lymphocyte counts via CBC and immunophenotyping. Physioxic expansion increases numbers of potent hematopoietic cell subpopulations and frequencies of specific lymphocyte compartments in multiple organs. Thus, expansion under physioxia is a viable strategy to enhance recovery of lymphocytes PT.Item Biomarkers for Allogeneic HCT Outcomes(Frontiers Media, 2020-04-21) Adom, Djamilatou; Rowan, Courtney; Adeniyan, Titilayo; Yang, Jinfeng; Paczesny, Sophie; Pediatrics, School of MedicineAllogeneic hematopoietic cell transplantation (HCT) remains the only curative therapy for many hematological malignant and non-malignant disorders. However, key obstacles to the success of HCT include graft-versus-host disease (GVHD) and disease relapse due to absence of graft-versus-tumor (GVT) effect. Over the last decade, advances in “omics” technologies and systems biology analysis, have allowed for the discovery and validation of blood biomarkers that can be used as diagnostic test and prognostic test (that risk-stratify patients before disease occurrence) for acute and chronic GVHD and recently GVT. There are also predictive biomarkers that categorize patients based on their likely to respond to therapy. Newer mathematical analysis such as machine learning is able to identify different predictors of GVHD using clinical characteristics pre-transplant and possibly in the future combined with other biomarkers. Biomarkers are not only useful to identify patients with higher risk of disease progression, but also help guide treatment decisions and/or provide a basis for specific therapeutic interventions. This review summarizes biomarkers definition, omics technologies, acute, chronic GVHD and GVT biomarkers currently used in clinic or with potential as targets for existing or new drugs focusing on novel published work.Item Early high plasma ST2, the decoy IL-33 receptor, in children undergoing hematopoietic cell transplantation is associated with the development of post-transplant diabetes mellitus(Ferrata Storti Foundation, 2020-05) Rowan, Courtney M.; Teagarden, Alicia M.; Cater, Daniel T.; Moser, Elizabeth A.S.; Baykoyanni, Giorgos; Paczesny, Sophie; Pediatrics, School of MedicineItem Enhanced Collection of Phenotypic and Engrafting Human Cord Blood Hematopoietic Stem Cells at 4°C(Oxford University Press, 2020-10) Broxmeyer, Hal E.; Cooper, Scott; Capitano, Maegan L.; Microbiology and Immunology, School of MedicineThe number of hematopoietic stem cells (HSCs) collected in cord blood (CB) at the birth of a baby is a limiting factor for efficacious use of CB in hematopoietic cell transplantation (HCT). We now demonstrate that collecting and processing of human CB at 4°C within minutes of the baby's birth results in significantly enhanced numbers of rigorously defined phenotypic HSC and self-renewing NSG immune-deficient mouse engrafting and SCID-repopulating cells. This was associated with decreased numbers of hematopoietic progenitor cells (HPC), as noted previously for hypoxia collected/processed cells blocking ambient air induced differentiation of HSC to HPC. We have thus defined a simple, cost-effective, means to collect increased numbers of CB HSC, of potential use for clinical CB HCT.Item An expanded role for Dipeptidyl peptidase 4 (DPP4) in cell regulation(Wolters Kluwer, 2020) Ropa, James; Broxmeyer, Hal E.; Microbiology and Immunology, School of MedicinePurpose of review: Dipeptidyl peptidase 4 (DPP4) is a serine protease with diverse regulatory functions in healthy and diseased cells. Much remains unknown about the mechanisms and targets of DPP4. Here we discuss new studies exploring DPP4-mediated cellular regulation, provide an updated list of potential targets of DPP4, and discuss clinical implications of each. Recent findings: Recent studies have sought enhanced efficacy of targeting DPP4's role in regulating hematopoietic stem and progenitor cells for improved clinical application. Further studies have identified DPP4 functions in different cellular compartments and have proposed ways to target this protein in malignancy. These findings, together with an expanded list of putative extracellular, cell surface, and intracellular DPP4 targets, provide insight into new DPP4-mediated cell regulation. Summary: DPP4 posttranslationally modifies proteins and peptides with essential roles in hematopoietic cell regulation, stem cell transplantation, and malignancy. Targets include secreted signaling factors and may include membrane proteins and transcription factors critical for different hematopoietic functions. Knowing these targets and functions can provide insight into new regulatory roles for DPP4 that may be targeted to enhance transplantation, treat disease, and better understand different regulatory pathways of hematopoiesis.Item Fluid Overload in Pediatric Acute Respiratory Distress Syndrome after Allogeneic Hematopoietic Cell Transplantation(Thieme, 2022-10-11) Sallee, Colin J.; Fitzgerald, Julie C.; Smith, Lincoln S.; Angelo, Joseph R.; Daniel, Megan C.; Gertz, Shira J.; Hsing, Deyin D.; Mahadeo, Kris M.; McArthur, Jennifer A.; Rowan, Courtney M.; Pediatric Acute Lung Injury Sepsis Investigators (PALISI) Network; Pediatrics, School of MedicineThe aim of the study is to examine the relationship between fluid overload (FO) and severity of respiratory dysfunction in children posthematopoietic cell transplantation (HCT) with pediatric acute respiratory distress syndrome (PARDS). This investigation was a secondary analysis of a multicenter retrospective cohort of children (1month to 21 years) postallogeneic HCT with PARDS receiving invasive mechanical ventilation (IMV) from 2009 to 2014. Daily FO % (FO%) and daily oxygenation index (OI) were calculated for each patient up to the first week of IMV (day 0 = intubation). Linear mixed-effect regression was employed to examine whether FO% and OI were associated on any day during the study period. In total, 158 patients were included. Severe PARDS represented 63% of the cohort and had higher mortality (78 vs. 42%, p <0.001), fewer ventilator free days at 28 (0 [IQR: 0-0] vs. 14 [IQR: 0-23], p <0.001), and 60 days (0 [IQR: 0-27] v. 45 [IQR: 0-55], p <0.001) relative to nonsevere PARDS. Increasing FO% was strongly associated with higher OI ( p <0.001). For children with 10% FO, OI was higher by nearly 5 points (adjusted β , 4.6, 95% CI: [2.9, 6.3]). In subgroup analyses, the association between FO% and OI was strongest among severe PARDS ( p <0.001) and during the first 3 days elapsed from intubation ( p <0.001). FO% was associated with lower PaO 2 /FiO 2 (adjusted β , -1.92, 95% CI: [-3.11, -0.73], p = 0.002), but not mean airway pressure ( p = 0.746). In a multicenter cohort of children post-HCT with PARDS, FO was independently associated with oxygenation impairment. The associations were strongest among children with severe PARDS and early in the course of IMV.Item Hematopoietic Cell Transplantation Using Reduced-Intensity Conditioning Is Successful in Children with Hematologic Cytopenias of Genetic Origin(Elsevier, 2015-07) Kothari, Alok; Ngwube, Alexander; Hayashi, Robert; Murray, Lisa; Davis, Jeffrey; Haut, Paul; Loechelt, Brett J.; Shenoy, Shalini; Department of Pediatrics, IU School of MedicineGenetically derived hematologic cytopenias are a rare heterogeneous group of disorders. Allogeneic hematopoietic cell transplantation (HCT) is curative but offset by organ toxicities from the preparative regimen, graft rejection, graft-versus-host disease (GVHD), or mortality. Because of these possibilities, consideration of HCT can be delayed, especially in the unrelated donor setting. We report a prospective multicenter trial of reduced-intensity conditioning (RIC) with alemtuzumab, fludarabine, and melphalan and HCT in 11 children with marrow failure of genetic origin (excluding Fanconi anemia) using the best available donor source (82% from unrelated donors). The median age at transplantation was 23 months (range, 2 months to 14 years). The median times to neutrophil (>500 × 106/L) and platelet (>50 × 109/L) engraftment were 13 (range, 12 to 24) and 30 (range, 7 to 55) days, respectively. The day +100 probability of grade II to IV acute GVHD and the 1-year probability of limited and extensive GVHD were 9% and 27%, respectively. The probability of 5-year overall and event-free survival was 82%; 9 patients were alive with normal blood counts at last follow-up and all were successfully off systemic immunosuppression. In patients with genetically derived severe hematologic cytopenias, allogeneic HCT with this RIC regimen was successful in achieving a cure. This experience supports consideration of HCT early in such patients even in the absence of suitable related donors.Item Insights into highly engraftable hematopoietic cells from 27-year cryopreserved umbilical cord blood(Elsevier, 2023) Broxmeyer, Hal E.; Luchsinger, Larry L.; Singer Weinberg, Rona; Jimenez, Alexandra; Masson Frenet, Emeline; Van't Hof, Wouter; Capitano, Maegan L.; Hillyer, Christopher D.; Kaplan, Mark H.; Cooper, Scott; Ropa, James; Microbiology and Immunology, School of MedicineUmbilical cord blood transplantation is a life-saving treatment for malignant and non-malignant hematologic disorders. It remains unclear how long cryopreserved units remain functional, and the length of cryopreservation is often used as a criterion to exclude older units. We demonstrate that long-term cryopreserved cord blood retains similar numbers of hematopoietic stem and progenitor cells compared with fresh and recently cryopreserved cord blood units. Long-term cryopreserved units contain highly functional cells, yielding robust engraftment in mouse transplantation models. We also leverage differences between units to examine gene programs associated with better engraftment. Transcriptomic analyses reveal that gene programs associated with lineage determination and oxidative stress are enriched in high engrafting cord blood, revealing potential molecular markers to be used as potency markers for cord blood unit selection regardless of length of cryopreservation. In summary, cord blood units cryopreserved for extended periods retain engrafting potential and can potentially be used for patient treatment.Item Leptin Receptor, a Surface Marker for a Subset of Highly Engrafting Long-term Functional Hematopoietic Stem Cells(Springer Nature, 2021) Trinh, Thao; Ropa, James; Aljoufi, Arafat; Cooper, Scott; Sinn, Anthony; Srour, Edward F.; Broxmeyer, Hal E.; Microbiology and Immunology, School of MedicineThe hematopoietic system is sustained by a rare population of hematopoietic stem cells (HSCs), which emerge during early embryonic development and then reside in the hypoxic niche of the adult bone marrow microenvironment. Although leptin receptor (Lepr)-expressing stromal cells are well-studied as critical regulators of murine hematopoiesis, the biological implications of Lepr expression on HSCs remain largely unexplored. We hypothesized that Lepr+HSCs are functionally different from other HSCs. Using in vitro and in vivo experimental approaches, we demonstrated that Lepr further differentiates SLAM HSCs into two distinct populations; Lepr+HSCs engrafted better than Lepr−HSCs and self-renewed more extensively as noted in secondary transplants. Molecularly, Lepr+HSCs were characterized by a proinflammatory transcriptomic profile enriched for Type-I Interferon and Interferon-gamma (IFN-γ) response pathways, which are known to be critical for the emergence of HSCs in the embryo. We conclude that although Lepr+HSCs represent a minor subset of HSCs, they are highly engrafting cells that possess embryonic-like transcriptomic characteristics, and that Lepr can serve as a reliable marker for functional long term HSCs, which may have potential clinical applicability.Item Lysosomal Acid Lipase Is Required for Donor T Cells to Induce Graft-versus-Host Disease(Cell Press, 2020-10-27) Nguyen, Hung D.; Ticer, Taylor; Bastian, David; Kuril, Sandeepkumar; Li, Hong; Du, Hong; Yan, Cong; Yu, Xue-Zhong; Pathology and Laboratory Medicine, School of MedicineGraft-versus-host disease (GVHD) limits the success of allogeneic hematopoietic cell transplantation (allo-HCT). Lysosomal acid lipase (LAL) mediates the intrinsic lipolysis of cells to generate free fatty acids (FFAs), which play an essential role in the development, proliferation, and function of T cells. Here, we find that LAL is essential for donor T cells to induce GVHD in murine models of allo-HCT. Specifically, LAL is required for donor T cell survival, differentiation, and alloreactivity in GVHD target organs, but not in lymphoid organs. LAL induces the differentiation of donor T cells toward GVHD pathogenic Th1/Tc1 and Th17 while suppressing regulatory T cell generation. LAL-/- T cells succumb to oxidative stress and become anergic in target organs. Pharmacologically targeting LAL effectively prevents GVHD development while preserving the GVL activity. Thus, the present study reveals the role of LAL in T cell alloresponse and pathogenicity and validates LAL as a target for controlling GVHD and tumor relapse after allo-HCT.