- Browse by Subject
Browsing by Subject "Heavy metals"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Contributory science reveals insights into metal pollution trends across different households and environmental media(IOP, 2023-02-17) Dietrich, Matthew; Wood, Leah R.; Shukle, John T.; Herrmann, Angela; Filippelli, Gabriel M.; Earth and Environmental Sciences, School of ScienceHeavy metals are prevalent in urban settings due to many legacy and modern pollution sources, and are essential to quantify because of the adverse health effects associated with them. Of particular importance is lead (Pb), because there is no safe level of exposure, and it especially harms children. Through our partnership with community scientists in the Marion County (Indiana, United States) area (n = 162 households), we measured Pb and other heavy metal concentrations in soil, paint, and dust. Community scientists completed sampling with screening kits and samples were analyzed in the laboratory via x-ray fluorescence by researchers to quantify heavy metal concentrations, with Pb hazards reported back to participants. Results point to renters being significantly (p ≤ 0.05) more likely to contain higher concentrations of Pb, zinc (Zn), and copper (Cu) in their soil versus homeowners, irrespective of soil sampling location at the home. Housing age was significantly negatively correlated with Pb and Zn in soil and Pb in dust across all homes. Analysis of paired soil, dust, and paint samples revealed several important relationships such as significant positive correlations between indoor vacuum dust Pb, dust wipe Pb, and outdoor soil Pb. Our collective results point to rental status being an important determinant of metal pollution exposure in Indianapolis, with housing age being reflective of both past and present Zn and Pb pollution at the household scale in dust and soil. Thus, future environmental pollution work examining renters versus homeowners, as well as other household data such as home condition and resident race/ethnicity, is imperative for better understanding environmental disparities surrounding not just Pb, but other heavy metals in environmental media as well.Item Road sediment, an underutilized material in environmental science research: A review of perspectives on United States studies with international context(ESS Open Archive, 2022) Dietrich, Matthew; O'Shea, Michael J.; Gieré, Reto; Krekeler, Mark P. S.; Earth and Environmental Sciences, School of ScienceRoad sediment is a pervasive environmental medium that acts as both source and sink for a variety of natural and anthropogenic particles and often is enriched in heavy metals. Road sediment is generally understudied in the United States (U.S.) relative to other environmental media and compared to countries such as China and the United Kingdom (U.K.). However, the U.S. is an ideal target for these studies due to the diverse climates and wealth of geo-chemical, socioeconomic, demographic, and health data. This review outlines the existing U.S. road sediment literature while also providing key international perspectives and context. Furthermore, the most comprehensive table of U.S. road sediment studies to date is presented, which includes elemental concentrations , sample size, size fraction, collection and analytical methods, as well as digestion procedure. Overall, there were observed differences in studies by sampling time period for elemental concentrations, but not necessarily by climate in the U.S. Other key concepts addressed in this road sediment review include the processes controlling its distribution, the variety of nomenclature used, an-thropogenic enrichment of heavy metals, electron microscopy, health risk assessments , remediation, and future directions of road sediment investigations. Going forward, it is recommended that studies with a higher geographic diversity are performed that consider smaller cities and rural areas. Furthermore, environmental justice must be a focus as community science studies of road sediment can elucidate pollution issues impacting areas of high need. Finally, this review calls for consistency in sampling, data reporting, and nomenclature to effectively expand work on understudied elements, particles, and background sediments.Item Using community science for detailed pollution research: a case-study approach in Indianapolis, IN, USA(Springer, 2023-01) Dietrich, Matthew; Rader, Shelby T.; Filippelli, Gabriel M.; Earth Science, School of ScienceHeavy metal contamination in urban environments, particularly lead (Pb) pollution, is a health hazard both to humans and ecological systems. Despite wide recognition of urban metal pollution in many cities, there is still relatively limited research regarding heavy metal distribution and transport at the household-scale between soils and indoor dusts-the most important scale for actual human interaction and exposure. Thus, using community-scientist-generated samples in Indianapolis, IN (USA), we applied bulk chemistry, Pb isotopes, and scanning electron microscopy (SEM) to illustrate how detailed analytical techniques can aid in interpretation of Pb pollution distribution at the household-scale. Our techniques provide definitive evidence for Pb paint sourcing in some homes, while others may be polluted with Pb from past industrial/vehicular sources. SEM revealed anthropogenic particles suggestive of Pb paint and the widespread occurrence of Fe-rich metal anthropogenic spherules across all homes, indicative of pollutant transport processes. The variability of Pb pollution at the household scale evident in just four homes is a testament to the heterogeneity and complexity of urban pollution. Future urban pollution research efforts would do well to utilize these more detailed analytical methods on community-sourced samples to gain better insight into where the Pb came from and how it currently exists in the environment. However, these methods should be applied after large-scale pollution screening techniques such as portable X-ray fluorescence (XRF), with more detailed analytical techniques focused on areas where bulk chemistry alone cannot pinpoint dominant pollution mechanisms and where community scientists can also give important metadata to support geochemical interpretations.Item Using community science for detailed pollution research: A case-study approach in Indianapolis, IN, USA(Springer Nature, 2022-11-21) Dietrich, Matthew; Rader, Shelby; Filippelli, Gabriel; Earth and Environmental Sciences, School of ScienceHeavy metal contamination in urban environments, particularly lead (Pb) pollution, is a health hazard both to humans and ecological systems. Despite wide recognition of urban metal pollution in many cities, there is still relatively limited research regarding heavy metal distribution and transport at the household-scale between soils and indoor dusts-the most important scale for actual human interaction and exposure. Thus, using community-scientist-generated samples in Indianapolis, IN (USA), we applied bulk chemistry, Pb isotopes, and scanning electron microscopy (SEM) to illustrate how detailed analytical techniques can aid in interpretation of Pb pollution distribution at the household-scale. Our techniques provide definitive evidence for Pb paint sourcing in some homes, while others may be polluted with Pb from past industrial/vehicular sources. SEM revealed anthropogenic particles suggestive of Pb paint and the widespread occurrence of Fe-rich metal anthropogenic spherules across all homes, indicative of pollutant transport processes. The variability of Pb pollution at the household scale evident in just four homes is a testament to the heterogeneity and complexity of urban pollution. Future urban pollution research efforts would do well to utilize these more detailed analytical methods on community-sourced samples to gain better insight into where the Pb came from and how it currently exists in the environment. However, these methods should be applied after large-scale pollution screening techniques such as portable X-ray fluorescence (XRF), with more detailed analytical techniques focused on areas where bulk chemistry alone cannot pinpoint dominant pollution mechanisms and where community scientists can also give important metadata to support geochemical interpretations.