ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Health Level Seven"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    An Evaluation of Two Methods for Generating Synthetic HL7 Segments Reflecting Real-World Health Information Exchange Transactions
    (American Medical Informatics Association, 2014) Mwogi, Thomas S.; Biondich, Paul G.; Grannis, Shaun J.; Department of Pediatrics, IU School of Medicine
    Motivated by the need for readily available data for testing an open-source health information exchange platform, we developed and evaluated two methods for generating synthetic messages. The methods used HL7 version 2 messages obtained from the Indiana Network for Patient Care. Data from both methods were analyzed to assess how effectively the output reflected original 'real-world' data. The Markov Chain method (MCM) used an algorithm based on transitional probability matrix while the Music Box model (MBM) randomly selected messages of particular trigger type from the original data to generate new messages. The MBM was faster, generated shorter messages and exhibited less variation in message length. The MCM required more computational power, generated longer messages with more message length variability. Both methods exhibited adequate coverage, producing a high proportion of messages consistent with original messages. Both methods yielded similar rates of valid messages.
  • Loading...
    Thumbnail Image
    Item
    Impact of document consolidation on healthcare providers’ perceived workload and information reconciliation tasks: a mixed methods study
    (Oxford University Press, 2019-02) Hosseini, Masoud; Faiola, Anthony; Jones, Josette; Vreeman, Daniel J.; Wu, Huanmei; Dixon, Brian E.; Medicine, School of Medicine
    Background Information reconciliation is a common yet complex and often time-consuming task performed by healthcare providers. While electronic health record systems can receive “outside information” about a patient in electronic documents, rarely does the computer automate reconciling information about a patient across all documents. Materials and Methods Using a mixed methods design, we evaluated an information system designed to reconcile information across multiple electronic documents containing health records for a patient received from a health information exchange (HIE) network. Nine healthcare providers participated in scenario-based sessions in which they manually consolidated information across multiple documents. Accuracy of consolidation was measured along with the time spent completing 3 different reconciliation scenarios with and without support from the information system. Participants also attended an interview about their experience. Perceived workload was evaluated quantitatively using the NASA-TLX tool. Qualitative analysis focused on providers’ impression of the system and the challenges faced when reconciling information in practice. Results While 5 providers made mistakes when trying to manually reconcile information across multiple documents, no participants made a mistake when the system supported their work. Overall perceived workload decreased significantly for scenarios supported by the system (37.2% in referrals, 18.4% in medications, and 31.5% in problems scenarios, P < 0.001). Information reconciliation time was reduced significantly when the system supported provider tasks (58.8% in referrals, 38.1% in medications, and 65.1% in problem scenarios). Conclusion Automating retrieval and reconciliation of information across multiple electronic documents shows promise for reducing healthcare providers’ task complexity and workload.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University