- Browse by Subject
Browsing by Subject "Haematopoietic stem cells"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Acute respiratory failure and the kinetics of neutrophil recovery in pediatric hematopoietic cell transplantation: a multicenter study(Springer Nature, 2020-02) Moffet, J.R.; Mahadeo, K.M.; McArthur, J.; Hsing, D.D.; Gertz, S.J.; Smith, L.S.; Loomis, A.; Fitzgerald, J.C.; Nitu, M.E.; Duncan, C.N.; Hall, M.W.; Pinos, E.L.; Tamburro, R.F.; Simmons, R.A.; Troy, J.; Cheifetz, I.M.; Rowan, C.M.; Pediatrics, School of MedicineIn this multicenter study, we investigated the kinetics of neutrophil recovery in relation to acuity and survival among 125 children undergoing allogeneic hematopoietic cell transplantation (allo-HCT) who required invasive mechanical ventilation (IMV). Recovery of neutrophils, whether prior to or after initiation of IMV, was associated with a significantly decreased risk of death relative to never achieving neutrophil recovery. A transient increase in acuity (by oxygenation index and vasopressor requirements) occurred among a subset of the patients who achieved neutrophil recovery after initiation of IMV; 61.5% of these patients survived to discharge from the intensive care unit (ICU). Improved survival among patients who subsequently achieved neutrophil recovery on IMV was not limited to those with peri-engraftment respiratory distress syndrome. The presence of a respiratory pathogen did not affect the risk of death while on IMV but was associated with an increased length of IMV (p < 0.01). Among patients undergoing HCT who develop respiratory failure and require advanced therapeutic support, neutrophil recovery at time of IMV and/or presence of a respiratory pathogen should not be used as determining factors when counseling families about survival.Item Author Correction: Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway(Nature Publishing Group, 2020-07-28) Chen, Sisi; Wang, Qiang; Yu, Hao; Capitano, Maegan L.; Vemula, Sasidhar; Nabinger, Sarah C.; Gao, Rui; Yao, Chonghua; Kobayashi, Michihiro; Geng, Zhuangzhuang; Fahey, Aidan; Henley, Danielle; Liu, Stephen Z.; Barajas, Sergio; Cai, Wenjie; Wolf, Eric R.; Ramdas, Baskar; Cai, Zhigang; Gao, Hongyu; Luo, Na; Sun, Yang; Wong, Terrence N.; Link, Daniel C.; Liu, Yunlong; Boswell, H. Scott; Mayo, Lindsey D.; Huang, Gang; Kapur, Reuben; Yoder, Mervin C.; Broxmeyer, Hal E.; Gao, Zhonghua; Liu, Yan; Biochemistry and Molecular Biology, School of MedicineItem Insights into the biology of cord blood stem/progenitor cells(Wiley, 2011-04) Broxmeyer, H.E.; Microbiology and Immunology, School of MedicineObjectives: To review information on cord blood banking and transplantation with respect to the author’s studies, and in context of this field of investigation. Results: Cord blood transplantation has been successfully used to treat a number of malignant and non‐malignant disorders. However, this technique is still associated with limited numbers of cells for transplantation, and with delayed engraftment of neutrophils and platelets. The field of cord blood transplantation will benefit from enhanced and mechanistically based information on haematopoietic stem cell function and potential means to enhance its effectiveness are reviewed. This includes notions concerning possibility of retrieving more cells from the placenta and cord blood, to expand haematopoietic stem cells ex vivo and to increase efficiency of homing and engraftment of these cells. Also discussed are cryopreservation and long‐term storage of cord blood haematopoietic and progenitor cells, and new laboratory findings and animal studies for non‐haematopoietic uses of cord blood.Item Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway(Nature Research, 2019-12-11) Chen, Sisi; Wang, Qiang; Yu, Hao; Capitano, Maegan L.; Vemula, Sasidhar; Nabinger, Sarah C.; Gao, Rui; Yao, Chonghua; Kobayashi, Michihiro; Geng, Zhuangzhuang; Fahey, Aidan; Henley, Danielle; Liu, Stephen Z.; Barajas, Sergio; Sergio, Wenjie; Wolf, Eric R.; Ramdas, Baskar; Cai, Zhigang; Gao, Hongyu; Luo, Na; Sun, Yang; Wong, Terrence N.; Link, Daniel C.; Liu, Yunlong; Boswell, H. Scott; Mayo, Lindsey D.; Huang, Gang; Kapur, Reuben; Yoder, Mervin C.; Broxmeyer, Hal E.; Gao, Zhonghua; Liu, Yan; Biochemistry and Molecular Biology, School of MedicineClonal hematopoiesis of indeterminate potential (CHIP) increases with age and is associated with increased risks of hematological malignancies. While TP53 mutations have been identified in CHIP, the molecular mechanisms by which mutant p53 promotes hematopoietic stem and progenitor cell (HSPC) expansion are largely unknown. Here we discover that mutant p53 confers a competitive advantage to HSPCs following transplantation and promotes HSPC expansion after radiation-induced stress. Mechanistically, mutant p53 interacts with EZH2 and enhances its association with the chromatin, thereby increasing the levels of H3K27me3 in genes regulating HSPC self-renewal and differentiation. Furthermore, genetic and pharmacological inhibition of EZH2 decreases the repopulating potential of p53 mutant HSPCs. Thus, we uncover an epigenetic mechanism by which mutant p53 drives clonal hematopoiesis. Our work will likely establish epigenetic regulator EZH2 as a novel therapeutic target for preventing CHIP progression and treating hematological malignancies with TP53 mutations.