- Browse by Subject
Browsing by Subject "Growth Factors"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Exploring Chondrocyte Integrin Regulation of Growth Factor IGF-I Expression from a Transient pAAV Vector(2013-08-20) Ratley, Samantha Kay; Trippel, Stephen B.; Lin, Chien-Chi; Stocum, David L.Insulin-like Growth Factor I (IGF-I) is a growth factor that stimulates both mitogenic and anabolic responses in articular chondrocytes. While it has been shown that exogenous IGF-I can regulate chondrocyte integrins, little is known regarding regulatory effects of IGF-I produced from a transiently expressed plasmid based adeno-associated virus (pAAV) vector. Because chondrocytes are using cellular machinery to overexpress IGF-I, it is of interest to see whether or not pAAV IGF-I will significantly upregulate or downregulate chondrocyte integrins. Additionally, it is of interest to know whether chondrocyte adhesion through integrins will have any regulatory effects on the production of IGF-I from the transgene. Therefore, this study will ascertain if pAAV IGF-I will have similar effects that exogenous IGF-I has on integrin regulation and if integrin silencing mechanisms will affect the production of IGF-I from the transgene. To test these hypotheses, adult articular chondrocytes were doubly transfected with the pAAV vector for IGF-I and short interference ribonucleic acid (siRNA) for integrins beta 1 and alpha V. Gene products were monitored at the transcriptional levels using quantitative real time polymerase chain reactions (qPCR) and IGF-I protein production was monitored at the translational level using enzyme linked immunoabsorbant assays (ELISAs). Adult articular chondrocytes doubly transfected were encapsulated in a three dimensional hydrogel system to simulate an in vivo environment. Samples were collected for analysis at days 2, 4, and 6 post encapsulation. Results show that IGF-I treatment with the pAAV vector does not cause significant changes in the transcriptional regulation of the beta 1 integrin in a three dimensional hydrogel system. The pAAV IGF-I vector did not cause significant regulatory changes on integrin alpha V at any time point during the experiment. Additionally, by knocking down the expression levels of integrins by using siRNA, it was shown that integrin knockdown does not have a significant regulatory effect on transcriptional or translational expression levels of IGF-I from the pAAV vector.Item Internal Tandem Duplication in FLT3 Attenuates Proliferation and Regulates Resistance to the FLT3 Inhibitor AC220 by Modulating p21Cdkn1a and Pbx1 in Hematopoietic Cells(Public Library of Science (PLoS), 2016) Abe, Mariko; Pelus, Louis M.; Singh, Pratibha; Hirade, Tomohiro; Onishi, Chie; Purevsuren, Jamiyan; Taketani, Takeshi; Yamaguchi, Seiji; Fukuda, Seiji; Department of Microbiology and Immunology, IU School of MedicineInternal tandem duplication (ITD) mutations in the Fms-related tyrosine kinase 3 (FLT3) gene (FLT3-ITD) are associated with poor prognosis in patients with acute myeloid leukemia (AML). Due to the development of drug resistance, few FLT3-ITD inhibitors are effective against FLT3-ITD+ AML. In this study, we show that FLT3-ITD activates a novel pathway involving p21Cdkn1a (p21) and pre-B cell leukemia transcription factor 1 (Pbx1) that attenuates FLT3-ITD cell proliferation and is involved in the development of drug resistance. FLT3-ITD up-regulated p21 expression in both mouse bone marrow c-kit+-Sca-1+-Lin- (KSL) cells and Ba/F3 cells. The loss of p21 expression enhanced growth factor-independent proliferation and sensitivity to cytarabine as a consequence of concomitantly enriching the S+G2/M phase population and significantly increasing the expression of Pbx1, but not Evi-1, in FLT3-ITD+ cells. This enhanced cell proliferation following the loss of p21 was partially abrogated when Pbx1 expression was silenced in FLT3-ITD+ primary bone marrow colony-forming cells and Ba/F3 cells. When FLT3-ITD was antagonized with AC220, a selective inhibitor of FLT3-ITD, p21 expression was decreased coincident with Pbx1 mRNA up-regulation and a rapid decline in the number of viable FLT3-ITD+ Ba/F3 cells; however, the cells eventually became refractory to AC220. Overexpressing p21 in FLT3-ITD+ Ba/F3 cells delayed the emergence of cells that were refractory to AC220, whereas p21 silencing accelerated their development. These data indicate that FLT3-ITD is capable of inhibiting FLT3-ITD+ cell proliferation through the p21/Pbx1 axis and that treatments that antagonize FLT3-ITD contribute to the subsequent development of cells that are refractory to a FLT3-ITD inhibitor by disrupting p21 expression.