ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Group B Streptococcus"

Now showing 1 - 9 of 9
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A CRISPRi Library Screen in Group B Streptococcus Identifies Surface Immunogenic Protein (Sip) as a Mediator of Multiple Host Interactions
    (bioRxiv, 2024-12-07) Firestone, K.; Gopalakrishna, K. P.; Rogers, L. M.; Peters, A.; Gaddy, J. A.; Nichols, C.; Hall, M. H.; Varela, H. N.; Carlin, S. M.; Hillebrand, G. H.; Giacobe, E. J.; Aronoff, D. M.; Hooven, T. A.; Medicine, School of Medicine
    Group B Streptococcus (GBS; Streptococcus agalactiae) is an important pathobiont capable of colonizing various host environments, contributing to severe perinatal infections. Surface proteins play critical roles in GBS-host interactions, yet comprehensive studies of these proteins' functions have been limited by genetic manipulation challenges. This study leveraged a CRISPR interference (CRISPRi) library to target genes encoding surface-trafficked proteins in GBS, identifying their roles in modulating macrophage cytokine responses. Bioinformatic analysis of 654 GBS genomes revealed 66 conserved surface protein genes. Using a GBS strain expressing chromosomally integrated dCas9, we generated and validated CRISPRi strains targeting these genes. THP-1 macrophage-like cells were exposed to ethanol-killed GBS variants, and pro-inflammatory cytokines TNF-α and IL-1β were measured. Notably, knockdown of the sip gene, encoding the Surface Immunogenic Protein (Sip), significantly increased IL-1β secretion, implicating Sip in caspase-1-dependent regulation. Further, Δsip mutants demonstrated impaired biofilm formation, reduced adherence to human fetal membranes, and diminished uterine persistence in a mouse colonization model. These findings suggest Sip modulates GBS-host interactions critical for pathogenesis, underscoring its potential as a therapeutic target or vaccine component.
  • Loading...
    Thumbnail Image
    Item
    Distinct Group B Streptococcus Sequence and Capsule Types Differentially Impact Macrophage Stress and Inflammatory Signaling Responses
    (American Society for Microbiology, 2021-04-16) Flaherty, Rebecca A.; Aronoff, David M.; Gaddy, Jennifer A.; Petroff, Margaret G.; Manning, Shannon D.; Medicine, School of Medicine
    Group B Streptococcus (GBS) is an opportunistic bacterial pathogen that can contribute to the induction of preterm birth in colonized pregnant women and to severe neonatal disease. Many questions regarding the mechanisms that drive GBS-associated pathogenesis remain unanswered, and it is not yet clear why virulence has been observed to vary so extensively across GBS strains. Previously, we demonstrated that GBS strains of different sequence types (STs) and capsule (CPS) types induce different cytokine profiles in infected THP-1 macrophage-like cells. Here, we expanded on these studies by utilizing the same set of genetically diverse GBS isolates to assess ST and CPS-specific differences in upstream cell death and inflammatory signaling pathways. Our results demonstrate that particularly virulent STs and CPS types, such as the ST-17 and CPS III groups, induce enhanced Jun-N-terminal protein kinase (JNK) and NF-κB pathway activation following GBS infection of macrophages compared with other ST or CPS groups. Additionally, we found that ST-17, CPS III, and CPS V GBS strains induce the greatest levels of macrophage cell death during infection and exhibit a more pronounced ability to be internalized and to survive in macrophages following phagocytosis. These data provide further support for the hypothesis that variable host innate immune responses to GBS, which significantly impact pathogenesis, stem in part from genotypic and phenotypic differences among GBS isolates. These and similar studies may inform the development of improved diagnostic, preventive, or therapeutic strategies targeting invasive GBS infections.
  • Loading...
    Thumbnail Image
    Item
    Epidemiological Trends of Racial Differences in Early- and Late-onset Group B Streptococcus Disease in Tennessee
    (Oxford University Press, 2021) Hamdan, Lubna; Vandekar, Simon; Spieker, Andrew J.; Rahman, Herdi; Ndi, Danielle; Shekarabi, Emily S.; Thota, Jyotsna; Rankin, Danielle A.; Haddadin, Zaid; Markus, Tiffanie; Aronoff, David M.; Schaffner, William; Gaddy, Jennifer A.; Halasa, Natasha B.; Medicine, School of Medicine
    Background: The rates of early-onset group B Streptococcus (GBS) disease (EOGBS) have declined since the implementation of universal screening and intrapartum antibiotic prophylaxis guidelines but late-onset (LOGBS) rates remain unchanged. Racial differences in GBS disease rates have been previously documented, with Black infants having higher rates of EOGBS and LOGBS, but it is not known if these have persisted. Therefore, we sought to determine the differences in EOGBS and LOGBS disease by race over the past decade in Tennessee. Methods: This study used active population-based and laboratory-based surveillance data for invasive GBS disease conducted through Active Bacterial Core surveillance in selected counties across Tennessee. We included infants younger than 90 days and who had invasive GBS disease between 2009 and 2018. Results: A total of 356 GBS cases were included, with 60% having LOGBS. EOGBS and LOGBS had decreasing temporal trends over the study period. Overall, there were no changes in temporal trend noted in the rates of EOGBS and LOGBS among White infants. However, Black infants had significantly decreasing EOGBS and LOGBS temporal trends (relative risk [95% confidence interval], .87 [.79, .96] [P = .007] and .90 [.84-.97] [P = .003], respectively). Conclusions: Years after the successful implementation of the universal screening guidelines, our data revealed an overall decrease in LOGBS rates, primarily driven by changes among Black infants. More studies are needed to characterize the racial disparities in GBS rates, and factors driving them. Prevention measures such as vaccination are needed to have a further impact on disease rates.
  • Loading...
    Thumbnail Image
    Item
    Group B streptococcal infection of the genitourinary tract in pregnant and non-pregnant patients with diabetes mellitus: an immunocompromised host or something more?
    (Wiley, 2021) Nguyen, Lynsa M.; Omage, Joel I.; Noble, Kristen; McNew, Kelsey L.; Moore, Daniel J.; Aronoff, David M.; Doster, Ryan S.; Pediatrics, School of Medicine
    Group B Streptococcus (GBS), also known as Streptococcus agalactiae is a Gram-positive bacterium commonly encountered as part of the microbiota within the human gastrointestinal tract. A common cause of infections during pregnancy, GBS is responsible for invasive diseases ranging from urinary tract infections to chorioamnionitis and neonatal sepsis. Diabetes mellitus (DM) is a chronic disease resulting from impaired regulation of blood glucose levels. The incidence of DM has steadily increased worldwide to affecting over 450 million people. Poorly controlled DM is associated with multiple health comorbidities including an increased risk for infection. Epidemiologic studies have clearly demonstrated that DM correlates with an increased risk for invasive GBS infections, including skin and soft tissue infections and sepsis in non-pregnant adults. However, the impact of DM on risk for invasive GBS urogenital infections, particularly during the already vulnerable time of pregnancy, is less clear. We review the evolving epidemiology, immunology, and pathophysiology of GBS urogenital infections including rectovaginal colonization during pregnancy, neonatal infections of infants exposed to DM in utero, and urinary tract infections in pregnant and non-pregnant adults in the context of DM and highlight in vitro studies examining why DM might increase risk for GBS urogenital infection.
  • Loading...
    Thumbnail Image
    Item
    Multicenter Clinical Evaluation of the Xpert GBS LB Assay for Detection of Group B Streptococcus in Prenatal Screening Specimens
    (American Society for Microbiology, 2015-02) Buchan, Blake W.; Faron, Matthew L.; Fuller, DeAnna; Davis, Thomas E.; Mayne, Donna; Ledeboer, Nathan A.; Department of Microbiology and Immunology, IU School of Medicine
    Neonatal infection with Streptococcus agalactiae (group B Streptococcus [GBS]) is a leading cause of sepsis and meningitis in newborns. Recent guidelines have recommended universal screening of all pregnant women to identify those colonized with GBS and administration of peripartum prophylaxis to those identified as carriers to reduce the risk of early-onset GBS disease in neonates. Enriched culture methods are the current standard for prenatal GBS screening; however, the implementation of more sensitive molecular diagnostic tests may be able to further reduce the risk of early-onset GBS infection. We report a clinical evaluation of the Xpert GBS LB assay, a molecular diagnostic test for the identification of GBS from broth-enriched vaginal/rectal specimens obtained during routine prenatal screening. A total of 826 specimens were collected from women undergoing prenatal screening (35 to 37 weeks' gestation) and tested at one of three clinical centers. Each swab specimen was tested directly prior to enrichment using the Xpert GBS assay. Following 18 to 24 h of broth enrichment, each specimen was tested using the Xpert GBS LB assay and the FDA-cleared Smart GBS assay as a molecular diagnostic comparator. Results obtained using all three molecular tests were compared to those for broth-enriched culture as the gold standard. The sensitivity and specificity of the Xpert GBS LB assay were 99.0% and 92.4%, respectively, compared to those for the gold standard culture. The Smart GBS molecular test demonstrated sensitivity and specificity of 96.8% and 95.5%, respectively. The sensitivities of the two broth-enriched molecular methods were superior to those for direct testing of specimens using the Xpert GBS assay, which demonstrated sensitivity and specificity of 85.7% and 96.2%, respectively.
  • Loading...
    Thumbnail Image
    Item
    Multicenter Evaluation of NeuMoDx Group B Streptococcus Assay on the NeuMoDx 288 Molecular System
    (American Society for Microbiology, 2019-01-30) Emery, C. L.; Relich, R. F.; Davis, T. H.; Young, S. A.; Sims, M. D.; Boyanton, B. L.; Pathology & Laboratory Medicine, IU School of Medicine
    Group B Streptococcus (GBS) is the leading cause of neonatal sepsis and meningitis in developed countries. Recommendations for antepartum GBS detection include enriched culture with several options for identifying GBS, some of which are time-consuming. To reduce the time for identification and determination of the maternal GBS colonization status, rapid nucleic acid amplification technologies have been developed and commercialized. For rapid detection of GBS, a three-site clinical study was conducted to evaluate the NeuMoDx GBS assay, a real-time PCR test performed for vaginal/rectal swab specimens in Lim broth enrichment culture on the NeuMoDx 288 molecular system (NeuMoDx system); these data were used to a support 510(k) submission. A total of 1,250 eligible remnant samples were prospectively enrolled and tested during the study. The results of the PCR assay were compared to the results of the Centers for Disease Control and Prevention (CDC)-recommended enriched-culture method, which served as the gold standard reference method for the study. The NeuMoDx GBS assay results yielded a sensitivity of 96.9% (95% confidence interval [CI] = 94.1 to 98.4), specificity of 96.0% (95% CI = 94.6 to 97.1), and a total agreement with the reference method of 96.2% (95% CI = 93.8 to 98.3). NeuMoDx GBS assay results were also compared to results obtained using the BD MAX GBS assay on the BD MAX system. The two systems demonstrated a total percent agreement of 98.0% (95% CI = 95.5 to 100.0). The performance of the NeuMoDx GBS assay implemented on the NeuMoDx system compared favorably to the CDC enriched-culture method and to the BD MAX GBS assay.
  • Loading...
    Thumbnail Image
    Item
    Palmitate and group B Streptococcus synergistically and differentially induce IL-1β from human gestational membranes
    (Frontiers Media, 2024-05-23) Gaddy, Jennifer A.; Moore, Rebecca E.; Lochner, Jonathan S.; Rogers, Lisa M.; Noble, Kristen N.; Giri, Ayush; Aronoff, David M.; Cliffel, David; Eastman, Alison J.; Medicine, School of Medicine
    Introduction: Rupture of the gestational membranes often precedes major pregnancy complications, including preterm labor and preterm birth. One major cause of inflammation in the gestational membranes, chorioamnionitis (CAM) is often a result of bacterial infection. The commensal bacterium Streptococcus agalactiae, or Group B Streptococcus (GBS) is a leading infectious cause of CAM. Obesity is on the rise worldwide and roughly 1 in 4 pregnancy complications is related to obesity, and individuals with obesity are also more likely to be colonized by GBS. The gestational membranes are comprised of several distinct cell layers which are, from outermost to innermost: maternally-derived decidual stromal cells (DSCs), fetal cytotrophoblasts (CTBs), fetal mesenchymal cells, and fetal amnion epithelial cells (AECs). In addition, the gestational membranes have several immune cell populations; macrophages are the most common phagocyte. Here we characterize the effects of palmitate, the most common long-chain saturated fatty acid, on the inflammatory response of each layer of the gestational membranes when infected with GBS, using human cell lines and primary human tissue. Results: Palmitate itself slightly but significantly augments GBS proliferation. Palmitate and GBS co-stimulation synergized to induce many inflammatory proteins and cytokines, particularly IL-1β and matrix metalloproteinase 9 from DSCs, CTBs, and macrophages, but not from AECs. Many of these findings are recapitulated when treating cells with palmitate and a TLR2 or TLR4 agonist, suggesting broad applicability of palmitate-pathogen synergy. Co-culture of macrophages with DSCs or CTBs, upon co-stimulation with GBS and palmitate, resulted in increased inflammatory responses, contrary to previous work in the absence of palmitate. In whole gestational membrane biopsies, the amnion layer appeared to dampen immune responses from the DSC and CTB layers (the choriodecidua) to GBS and palmitate co-stimulation. Addition of the monounsaturated fatty acid oleate, the most abundant monounsaturated fatty acid in circulation, dampened the proinflammatory effect of palmitate. Discussion: These studies reveal a complex interplay between the immunological response of the distinct layers of the gestational membrane to GBS infection and that such responses can be altered by exposure to long-chain saturated fatty acids. These data provide insight into how metabolic syndromes such as obesity might contribute to an increased risk for GBS disease during pregnancy.
  • Loading...
    Thumbnail Image
    Item
    Production and Composition of Group B Streptococcal Membrane Vesicles Vary Across Diverse Lineages
    (Frontiers Media, 2021-11-22) McCutcheon, Cole R.; Pell, Macy E.; Gaddy, Jennifer A.; Aronoff, David M.; Petroff, Margaret G.; Manning, Shannon D.; Medicine, School of Medicine
    Although the neonatal and fetal pathogen Group B Streptococcus (GBS) asymptomatically colonizes the vaginal tract of ∼30% of pregnant women, only a fraction of their offspring develops invasive disease. We and others have postulated that these dimorphic clinical phenotypes are driven by strain variability; however, the bacterial factors that promote these divergent clinical phenotypes remain unclear. It was previously shown that GBS produces membrane vesicles (MVs) that contain active virulence factors capable of inducing adverse pregnancy outcomes. Because the relationship between strain variation and vesicle composition or production is unknown, we sought to quantify MV production and examine the protein composition, using label-free proteomics on MVs produced by diverse clinical GBS strains representing three phylogenetically distinct lineages. We found that MV production varied across strains, with certain strains displaying nearly twofold increases in production relative to others. Hierarchical clustering and principal component analysis of the proteomes revealed that MV composition is lineage-dependent but independent of clinical phenotype. Multiple proteins that contribute to virulence or immunomodulation, including hyaluronidase, C5a peptidase, and sialidases, were differentially abundant in MVs, and were partially responsible for this divergence. Together, these data indicate that production and composition of GBS MVs vary in a strain-dependent manner, suggesting that MVs have lineage-specific functions relating to virulence. Such differences may contribute to variation in clinical phenotypes observed among individuals infected with GBS strains representing distinct lineages.
  • Loading...
    Thumbnail Image
    Item
    The antimicrobial activity of zinc against group B Streptococcus is strain-dependent across diverse sequence types, capsular serotypes, and invasive versus colonizing isolates
    (Springer Nature, 2022-01-13) Francis, Jamisha D.; Guevara, Miriam A.; Lu, Jacky; Madhi, Shabir A.; Kwatra, Gaurav; Aronoff, David M.; Manning, Shannon D.; Gaddy, Jennifer A.; Medicine, School of Medicine
    Background: Streptococcus agalactiae or Group B Streptococcus (GBS) is an encapsulated gram-positive bacterial pathobiont that commonly colonizes the lower gastrointestinal tract and reproductive tract of human hosts. This bacterium can infect the gravid reproductive tract and cause invasive infections of pregnant patients and neonates. Upon colonizing the reproductive tract, the bacterial cell is presented with numerous nutritional challenges imposed by the host. One strategy employed by the host innate immune system is intoxication of bacterial invaders with certain transition metals such as zinc. Methodology: Previous work has demonstrated that GBS must employ elegant strategies to circumnavigate zinc stress in order to survive in the vertebrate host. We assessed 30 strains of GBS from diverse isolation sources, capsular serotypes, and sequence types for susceptibility or resistance to zinc intoxication. Results: Invasive strains, such as those isolated from early onset disease manifestations of GBS infection were significantly less susceptible to zinc toxicity than colonizing strains isolated from rectovaginal swabs of pregnant patients. Additionally, capsular type III (cpsIII) strains and the ST-17 and ST-19 strains exhibited the greatest resilience to zinc stress, whereas ST-1 and ST-12 strains as well as those possessing capsular type Ib (cpsIb) were more sensitive to zinc intoxication. Thus, this study demonstrates that the transition metal zinc possesses antimicrobial properties against a wide range of GBS strains, with isolation source, capsular serotype, and sequence type contributing to susceptibility or resistance to zinc stress.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University