- Browse by Subject
Browsing by Subject "Grassmannian"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Gaudin models associated to classical Lie algebras(2020-08) Lu, Kang; Mukhin, Evgeny; Its, Alexander; Roeder, Roland; Tarasov, VitalyWe study the Gaudin model associated to Lie algebras of classical types. First, we derive explicit formulas for solutions of the Bethe ansatz equations of the Gaudin model associated to the tensor product of one arbitrary finite-dimensional irreducible module and one vector representation for all simple Lie algebras of classical type. We use this result to show that the Bethe Ansatz is complete in any tensor product where all but one factor are vector representations and the evaluation parameters are generic. We also show that except for the type D, the joint spectrum of Gaudin Hamiltonians in such tensor products is simple. Second, we define a new stratification of the Grassmannian of N planes. We introduce a new subvariety of Grassmannian, called self-dual Grassmannian, using the connections between self-dual spaces and Gaudin model associated to Lie algebras of types B and C. Then we obtain a stratification of self-dual Grassmannian.Item Monodromy of the equivariant quantum differential equation of the cotangent bundle of a Grassmannian(Springer Nature, 2024) Tarasov, Vitaly; Varchenko , Alexander; Mathematical Sciences, School of ScienceWe describe the monodromy of the equivariant quantum differential equation of the cotangent bundle of a Grassmannian in terms of the equivariant K-theory algebra of the cotangent bundle. This description is based on the hypergeometric integral representations for solutions of the equivariant quantum differential equation. We identify the space of solutions with the space of the equivariant K-theory algebra of the cotangent bundle. In particular, we show that for any element of the monodromy group, all entries of its matrix in the standard basis of the equivariant K-theory algebra of the cotangent bundle are Laurent polynomials with integer coefficients in the exponentiated equivariant parameters.