- Browse by Subject
Browsing by Subject "Goblet Cells"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Consensus molecular subtyping of colorectal cancers is influenced by goblet cell content(Elsevier, 2021) Miller, Samuel A.; Ghobashi, Ahmed H.; O'Hagan, Heather M.; Medical and Molecular Genetics, School of MedicineA critical obstacle in the field of colorectal cancer (CRC) is the establishment of precise tumor subtypes to facilitate the development of targeted therapeutic regimens. While dysregulated mucin production is a histopathological feature of multiple CRC subtypes, it is not clear how well these pathologies are associated with the proportion of goblet cells in the tumor, or whether or not this proportion is variable across all CRC. This study demonstrates that consensus molecular subtype 3 (CMS3) CRC tumors and cell lines are enriched for the expression of goblet cell marker genes. Further, the proportion of goblet cells in the tumor is associated with the probability of CMS3 subtype assignment and these CMS3 subtype tumors are mutually exclusive from mucinous adenocarcinoma pathologies. This study provides proof of principle for the use of machine learning classification systems to subtype tumors based on cellular content, and provides further context regarding the features weighing CMS3 subtype assignment.Item Lunasin alleviates allergic airway inflammation while increases antigen-specific Tregs(PLoS, 2015-02-03) Yang, Xiaowei; Zhu, Jingjing; Tung, Chun-Yu; Gardiner, Gail; Wang, Qun; Chang, Hua-Chen; Zhou, Baohua; Department of Pediatrics, IU School of MedicineLunasin is a naturally occurring peptide isolated from soybeans and has been explored in cancer treatment. Lunasin inhibits NF-κB activation and thus pro-inflammatory cytokine and mediator production in macrophages. In this study we demonstrate that lunasin can effectively suppress allergic airway inflammation in two murine models of asthma. In an OVA+Alum sensitization model, intranasal lunasin treatment at the time of OVA challenges significantly reduced total cells counts in bronchoalveolar lavage (BAL) fluid and eosinophilia, peribronchiolar inflammatory infiltration, goblet cell metaplasia and airway IL-4 production. In an OVA+LPS intranasal sensitization model, lunasin treatment either at the time of sensitization or challenge has similar effects in suppress allergic airway inflammation including significantly reduced total cell and eosinophil counts in BAL fluid, inflammatory gene Fizz1 expression in the lung, and IL-4 production by OVA re-stimulated cells from mediastinal lymph nodes. We further show that intranasal instillation of OVA+lunasin significantly increases OVA-specific regulatory T cell (Treg) accumulation in the lung comparing to OVA only treatment. Taken together, our results suggest lunasin as an anti-inflammatory agent can be potentially used in asthma therapy or as an adjuvant to enhance the induction of antigen-specific Tregs and thus boost the efficacy of allergy immunotherapy.