- Browse by Subject
Browsing by Subject "Glycosylation"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Efficient transmission of human prion diseases to a glycan-free prion protein-expressing host(Oxford University Press, 2024) Cracco, Laura; Cali, Ignazio; Cohen, Mark L.; Aslam, Rabail; Notari, Silvio; Kong, Qingzhong; Newell, Kathy L.; Ghetti, Bernardino; Appleby, Brian S.; Gambetti, Pierluigi; Pathology and Laboratory Medicine, School of MedicineIt is increasingly evident that the association of glycans with the prion protein (PrP), a major post-translational modification, significantly impacts the pathogenesis of prion diseases. A recent bioassay study has provided evidence that the presence of PrP glycans decreases spongiform degeneration and disease-related PrP (PrPD) deposition in a murine model. We challenged (PRNPN181Q/197Q) transgenic (Tg) mice expressing glycan-free human PrP (TgGlyc-), with isolates from sporadic Creutzfeldt-Jakob disease subtype MM2 (sCJDMM2), sporadic fatal insomnia and familial fatal insomnia, three human prion diseases that are distinct but share histotypic and PrPD features. TgGlyc- mice accurately replicated the basic histotypic features associated with the three diseases but the transmission was characterized by high attack rates, shortened incubation periods and a greatly increased severity of the histopathology, including the presence of up to 40 times higher quantities of PrPD that formed prominent deposits. Although the engineered protease-resistant PrPD shared at least some features of the secondary structure and the presence of the anchorless PrPD variant with the wild-type PrPD, it exhibited different density gradient profiles of the PrPD aggregates and a higher stability index. The severity of the histopathological features including PrP deposition appeared to be related to the incubation period duration. These findings are clearly consistent with the protective role of the PrP glycans but also emphasize the complexity of the conformational changes that impact PrPD following glycan knockout. Future studies will determine whether these features apply broadly to other human prion diseases or are PrPD-type dependent.Item Glycosylation of a key cubilin Asn residue results in reduced binding to albumin(Elsevier, 2022) Yadav, Shiv Pratap Singh; Yu, Aiying; Zhao, Jingfu; Singh, Jasdeep; Kakkar, Saloni; Chakraborty, Srinivas; Mechref, Yehia; Molitoris, Bruce; Wagner, Mark C.; Medicine, School of MedicineKidney disease often manifests with an increase in proteinuria, which can result from both glomerular and/or proximal tubule injury. The proximal tubules are the major site of protein and peptide endocytosis of the glomerular filtrate, and cubilin is the proximal tubule brush border membrane glycoprotein receptor that binds filtered albumin and initiates its processing in proximal tubules. Albumin also undergoes multiple modifications depending upon the physiologic state. We previously documented that carbamylated albumin had reduced cubilin binding, but the effects of cubilin modifications on binding albumin remain unclear. Here, we investigate the cubilin-albumin binding interaction to define the impact of cubilin glycosylation and map the key glycosylation sites while also targeting specific changes in a rat model of proteinuria. We identified a key Asn residue, N1285, that when glycosylated reduced albumin binding. In addition, we found a pH-induced conformation change may contribute to ligand release. To further define the albumin-cubilin binding site, we determined the solution structure of cubilin's albumin-binding domain, CUB7,8, using small-angle X-ray scattering and molecular modeling. We combined this information with mass spectrometry crosslinking experiments of CUB7,8 and albumin that provides a model of the key amino acids required for cubilin-albumin binding. Together, our data supports an important role for glycosylation in regulating the cubilin interaction with albumin, which is altered in proteinuria and provides new insight into the binding interface necessary for the cubilin-albumin interaction.Item Influence of N-glycosylation in the A and C domains on the immunogenicity of factor VIII(American Society of Hematology, 2022) Vander Kooi, Amber; Wang, Shuaishuai; Fan, Meng-Ni; Chen, Alex; Zhang, Junping; Chen, Chun-Yu; Cai, Xiaohe; Konkle, Barbara A.; Xiao, Weidong; Li, Lei; Miao, Carol H.; Pediatrics, School of MedicineThe most significant complication in hemophilia A treatment is the formation of inhibitors against factor VIII (FVIII) protein. Glycans and glycan-binding proteins are central to a properly functioning immune system. This study focuses on whether glycosylation of FVIII plays an important role in induction and regulation of anti-FVIII immune responses. We investigated the potential roles of 4 N-glycosylation sites, including N41 and N239 in the A1 domain, N1810 in the A3 domain, and N2118 in the C1 domain of FVIII, in moderating its immunogenicity. Glycomics analysis of plasma-derived FVIII revealed that sites N41, N239, and N1810 contain mostly sialylated complex glycoforms, while high mannose glycans dominate at site N2118. A missense variant that substitutes asparagine (N) to glutamine (Q) was introduced to eliminate glycosylation on each of these sites. Following gene transfer of plasmids encoding B domain deleted FVIII (BDD-FVIII) and each of these 4 FVIII variants, it was found that specific activity of FVIII in plasma remained similar among all treatment groups. Slightly increased or comparable immune responses in N41Q, N239Q, and N1810Q FVIII variant plasmid-treated mice and significantly decreased immune responses in N2118Q FVIII plasmid-treated mice were observed when compared with BDD-FVIII plasmid-treated mice. The reduction of inhibitor response by N2118Q FVIII variant was also demonstrated in AAV-mediated gene transfer experiments. Furthermore, a specific glycopeptide epitope surrounding the N2118 glycosylation site was identified and characterized to activate T cells in an FVIII-specific proliferation assay. These results indicate that N-glycosylation of FVIII can have significant impact on its immunogenicity.Item Mass Spectrometry-Based Glycoproteomic Workflows for Cancer Biomarker Discovery(Sage, 2023) Doud, Emma H.; Yeh, Elizabeth S.; Biochemistry and Molecular Biology, School of MedicineGlycosylation has a clear role in cancer initiation and progression, with numerous studies identifying distinct glycan features or specific glycoproteoforms associated with cancer. Common findings include that aggressive cancers tend to have higher expression levels of enzymes that regulate glycosylation as well as glycoproteins with greater levels of complexity, increased branching, and enhanced chain length1. Research in cancer glycoproteomics over the last 50-plus years has mainly focused on technology development used to observe global changes in glycosylation. Efforts have also been made to connect glycans to their protein carriers as well as to delineate the role of these modifications in intracellular signaling and subsequent cell function. This review discusses currently available techniques utilizing mass spectrometry-based technologies used to study glycosylation and highlights areas for future advancement.Item Novel Genetic Variants of ALG6 and GALNTL4 of the Glycosylation Pathway Predict Cutaneous Melanoma-Specific Survival(MDPI, 2020-01-24) Zhou, Bingrong; Zhao, Yu Chen; Liu, Hongliang; Luo, Sheng; Amos, Christopher I.; Lee, Jeffrey E.; Li, Xin; Nan, Hongmei; Wei, Qingyi; Epidemiology, School of Public HealthBecause aberrant glycosylation is known to play a role in the progression of melanoma, we hypothesize that genetic variants of glycosylation pathway genes are associated with the survival of cutaneous melanoma (CM) patients. To test this hypothesis, we used a Cox proportional hazards regression model in a single-locus analysis to evaluate associations between 34,096 genetic variants of 227 glycosylation pathway genes and CM disease-specific survival (CMSS) using genotyping data from two previously published genome-wide association studies. The discovery dataset included 858 CM patients with 95 deaths from The University of Texas MD Anderson Cancer Center, and the replication dataset included 409 CM patients with 48 deaths from Harvard University nurse/physician cohorts. In the multivariable Cox regression analysis, we found that two novel single-nucleotide polymorphisms (SNPs) (ALG6 rs10889417 G>A and GALNTL4 rs12270446 G>C) predicted CMSS, with an adjusted hazards ratios of 0.60 (95% confidence interval = 0.44–0.83 and p = 0.002) and 0.66 (0.52–0.84 and 0.004), respectively. Subsequent expression quantitative trait loci (eQTL) analysis revealed that ALG6 rs10889417 was associated with mRNA expression levels in the cultured skin fibroblasts and whole blood cells and that GALNTL4 rs12270446 was associated with mRNA expression levels in the skin tissues (all p < 0.05). Our findings suggest that, once validated by other large patient cohorts, these two novel SNPs in the glycosylation pathway genes may be useful prognostic biomarkers for CMSS, likely through modulating their gene expression.Item Site-Specific N- and O-Glycosylation Analysis of Human Plasma Fibronectin(Frontiers Media, 2021-06-15) Liu, Ding; Wang, Shuaishuai; Zhang, Junping; Xiao, Weidong; Miao, Carol H.; Konkle, Barbara A.; Wan, Xiu-Feng; Li, Lei; Pediatrics, School of MedicineHuman plasma fibronectin is an adhesive protein that plays a crucial role in wound healing. Many studies had indicated that glycans might mediate the expression and functions of fibronectin, yet a comprehensive understanding of its glycosylation is still missing. Here, we performed a comprehensive N- and O-glycosylation mapping of human plasma fibronectin and quantified the occurrence of each glycoform in a site-specific manner. Intact N-glycopeptides were enriched by zwitterionic hydrophilic interaction chromatography, and N-glycosite sites were localized by the 18O-labeling method. O-glycopeptide enrichment and O-glycosite identification were achieved by an enzyme-assisted site-specific extraction method. An RP–LC–MS/MS system functionalized with collision-induced dissociation and stepped normalized collision energy (sNCE)-HCD tandem mass was applied to analyze the glycoforms of fibronectin. A total of 6 N-glycosites and 53 O-glycosites were identified, which were occupied by 38 N-glycoforms and 16 O-glycoforms, respectively. Furthermore, 77.31% of N-glycans were sialylated, and O-glycosylation was dominated by the sialyl-T antigen. These site-specific glycosylation patterns on human fibronectin can facilitate functional analyses of fibronectin and therapeutics development.