- Browse by Subject
Browsing by Subject "Glass ionomer cement"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Alternative Direct Restorative Materials for Dental Amalgam: A Concise Review Based on an FDI Policy Statement(Elsevier, 2024) Schmalz, Gottfried; Schwendicke, Falk; Hickel, Reinhard; Platt, Jeffrey A.; Biomedical and Applied Sciences, School of DentistryDental restorative procedures remain a cornerstone of dental practice, and for many decades, dental amalgam was the most frequently employed material. However, its use is declining, mainly driven by its poor aesthetics and by the development of tooth-coloured adhesive materials. Furthermore, the Minamata Convention agreed on a phase-down on the use of dental amalgam. This concise review is based on a FDI Policy Statement which provides guidance on the selection of direct restorative materials as alternatives to amalgam. The Policy Statement was informed by current literature, identified mainly from PubMed and the internet. Ultimately, dental, oral, and patient factors should be considered when choosing the best material for each individual case. Dental factors include the dentition, tooth type, and cavity class and extension; oral aspects comprise caries risk profiles and related risk factors; and patient-related aspects include systemic risks/medical conditions such as allergies towards certain materials as well as compliance. Special protective measures (eg, a no-touch technique, blue light protection) are required when handling resin-based materials, and copious water spray is recommended when adjusting or removing restorative materials. Cost and reimbursement policies may need to be considered when amalgam alternatives are used, and the material recommendation requires the informed consent of the patient. There is no single material which can replace amalgam in all applications; different materials are needed for different situations. The policy statement recommends using a patient-centred rather than purely a material-centred approach. Further research is needed to improve overall material properties, the clinical performance, the impact on the environment, and cost-effectiveness of all alternative materials.Item In-vitro wear and hardness of new conventional glass ionomer cement coated with nano-filled resin(2011) AlJamhan, Abdullah Saleh; Platt, Jeffrey Alan, 1958-; Matis, Bruce A.; Cochran, Michael A. (Michael Alan), 1944-; Cook, Norman Blaine, 1954-; Zandoná, Andréa G. Ferreira (Andréa Gonçalves Ferreira),1969-Background: Since the introduction of glass ionomer cements (GICs) in the 1970s, many attempts have been made to improve them and expand their application in restorative dentistry. Recently, GC America introduced a new glass ionomer restorative system called EQUIA. The manufacturer claims that this material has improved wear resistance by coating the surface of high-strength GIC with a nano-filled resin coating. Objective: The objective of this study was to measure the wear resistance and hardness of EQUIA and to compare it to other current restorative materials. Materials and Methods: Four different materials were used in this study: EQUIA, Fuji IX GP Extra, Fuji II LC and Z-100. Six specimens of each material were made and then tested in a toothbrush abrasion machine for 20,400 cycles, after which the amount of volume loss was calculated. Eight specimens of each material were made and tested in a three-body Alabama wear testing machine under a load of 75 N for 400,000 cycles. Four surface profiles were obtained from each specimen and volume loss was calculated using computer software. Five specimens of each material were made and Knoop microhardness was determined by using the mean of the three values from the top surface of the specimen. Results of each test were collected and compared with the other materials using one-way analysis of variance (ANOVA) at a significance level of 0.05. Results: Wear-resistance results showed that EQUIA has wear-resistance values comparable to composite resin and higher values than those for the high-strength GIC. The results also showed that Fuji II LC had the highest wear among all tested materials. Microhardness results showed that EQUIA has significantly lower microhardness than Fuji IX GP Extra and Z-100. Conclusion: Based on the results of the present study, it can be concluded that coating the surface of glass ionomer restorations with a nano-filled resin coat results in increasing the wear resistance and decreasing the microhardness of the material. Within the limitations of this study, EQUIA has comparable wear resistance to composite resin.