ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Gerstmann-Sträussler-Scheinker disease"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Amyloid and intracellular accumulation of BRI2
    (Elsevier, 2017-04) Garringer, Holly J.; Sammeta, Neeraja; Oblak, Adrian; Ghetti, Bernardino; Vidal, Ruben; Pathology and Laboratory Medicine, School of Medicine
    Familial British dementia (FBD) and familial Danish dementia (FDD) are caused by mutations in the BRI2 gene. These diseases are characterized clinically by progressive dementia and ataxia and neuropathologically by amyloid deposits and neurofibrillary tangles. Herein, we investigate BRI2 protein accumulation in FBD, FDD, Alzheimer disease and Gerstmann-Sträussler-Scheinker disease. In FBD and FDD, we observed reduced processing of the mutant BRI2 pro-protein, which was found accumulating intracellularly in the Golgi of neurons and glial cells. In addition, we observed an accumulation of a mature form of BRI2 protein in dystrophic neurites, surrounding amyloid cores. Accumulation of BRI2 was also observed in dystrophic neurites of Alzheimer disease and Gerstmann-Sträussler-Scheinker disease cases. Although it remains to be determined whether intracellular accumulation of BRI2 may lead to cell damage in these degenerative diseases, our study provides new insights into the role of mutant BRI2 in the pathogenesis of FBD and FDD and implicates BRI2 as a potential indicator of neuritic damage in diseases characterized by cerebral amyloid deposition.
  • Loading...
    Thumbnail Image
    Item
    Clinicopathological Correlates in a PRNP P102L Mutation Carrier with Rapidly Progressing Parkinsonism-dystonia
    (Wiley, 2016-07) Umeh, Chizoba C.; Kalakoti, Piyush; Greenberg, Michael K.; Notari, Silvio; Cohen, Yvonne; Gambetti, Pierluigi; Oblak, Adrian L.; Ghetti, Bernardino; Mari, Zoltan; Pathology and Laboratory Medicine, School of Medicine
    Parkinsonism-dystonia is rare in carriers of PRNP P102L mutation. Severity and distribution of prion protein (PrP) deposition may influence the clinical presentation. We present such clinic-pathological correlation in a 56-year-old male with a PRNP P102L mutation associated with a phenotype characterized by rapidly progressing parkinsonism-dystonia. The patient was studied clinically (videotaped exams, brain MRIs); molecular genetically (gene sequence analysis); and neuropathologically (histology, immunohistochemistry) during his 7-month disease course. The patient had parkinsonism, apraxia, aphasia, and dystonia, which progressed rapidly. Molecular genetic analysis revealed PRNP P102L mutation carrier status. Brain MRIs revealed progressive global volume loss and T2/FLAIR hyperintensity in neocortex and basal ganglia. Postmortem examination showed neuronal loss, gliosis, spongiform changes, and PrP deposition in the striatum. PrP immunohistochemistry revealed widespread severe PrP deposition in the thalamus and cerebellar cortex. Based on the neuropathological and molecular-genetic analysis, the rapidly progressing parkinsonism-dystonia correlated with nigrostriatal, thalamic, and cerebellar pathology.
  • Loading...
    Thumbnail Image
    Item
    Gerstmann-Sträussler-Scheinker disease subtypes efficiently transmit in bank voles as genuine prion diseases.
    (NPG, 2016) Pirisinu, Laura; Di Bari, Michele A.; D’Agostino, Claudia; Marcon, Stefano; Riccardi, Geraldina; Poleggi, Anna; Cohen, Mark L.; Appleby, Brian S.; Gambetti, Pierluigi; Ghetti, Bernardino; Agrimi, Umberto; Nonno, Romolo; Department of Pathology & Laboratory Medicine, IU School of Medicine
    Gerstmann-Sträussler-Scheinker disease (GSS) is an inherited neurodegenerative disorder associated with mutations in the prion protein gene and accumulation of misfolded PrP with protease-resistant fragments (PrPres) of 6–8 kDa.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University