ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Germinal Center"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Gut microbiota regulates K/BxN autoimmune arthritis through Tfh but not Th17 cells
    (American Association of Immunologists, 2016-02-15) Block, Katharine E.; Zheng, Zhong; Dent, Alexander L.; Kee, Barbara L.; Huang, Haochu; Department of Microbiology & Immunology, IU School of Medicine
    The bacterial community that colonizes mucosal surfaces helps shape the development and function of the immune system. The K/BxN autoimmune arthritis model is dependent on the microbiota, and particularly on segmented filamentous bacteria, for the autoimmune phenotype. The mechanisms of how the gut microbiota affects arthritis development are not well understood. In this study, we investigate the contribution of two T cell subsets, Th17 and follicular helper T (Tfh), to arthritis and how microbiota modulates their differentiation. Using genetic approaches, we demonstrate that IL-17 is dispensable for arthritis. Antibiotic treatment inhibits disease in IL-17-deficient animals, suggesting that the gut microbiota regulates arthritis independent of Th17 cells. In contrast, conditional deletion of Bcl6 in T cells blocks Tfh cell differentiation and arthritis development. Furthermore, Tfh cell differentiation is defective in antibiotic-treated mice. Taken together, we conclude that gut microbiota regulates arthritis through Tfh but not Th17 cells. These findings have implications in our understanding of how environmental factors contribute to the development of autoimmune diseases.
  • Loading...
    Thumbnail Image
    Item
    PU.1 expression in T follicular helper cells limits CD40L-dependent germinal center B cell development.
    (American Association of Immunologists, 2015-10-15) Awe, Olufolakemi; Hufford, Matthew M.; Wu, Hao; Pham, Duy; Chang, Hua-Chen; Jabeen, Rukhsana; Dent, Alexander L.; Kaplan, Mark H.; Department of Microbiology and Immunology, IU School of Medicine
    PU.1 is an ETS family transcription factor important for the development of multiple hematopoietic cell lineages. Previous work demonstrated a critical role for PU.1 in promoting Th9 development, and in limiting Th2 cytokine production. Whether PU.1 has functions in other T helper lineages is not clear. In this report we examined the effects of ectopic expression of PU.1 in CD4+T cells and observed decreased expression of genes involved with the function of T follicular helper (Tfh) cells, including Il21 and Tnfsf5 (encoding CD40L). T cells from conditional mutant mice that lack expression of PU.1 in T cells (Sfpi1lck−/−) demonstrated increased production of CD40L and IL-21 in vitro. Following adjuvant-dependent or adjuvant-independent immunization, we observed that Sfpi1lck−/− mice had increased numbers of Tfh cells, increased germinal center B cells, and increased antibody production in vivo. This correlated with increased expression of IL-21 and CD40L in Tfh cells from Sfpi1lck−/− mice, compared to control mice. Finally, although blockade of IL-21 did not affect germinal center B cells in Sfpi1lck−/− mice, anti-CD40L treatment of immunized Sfpi1lck−/− mice decreased germinal center B cell numbers and antigen-specific immunoglobulin concentrations. Together, these data indicate an inhibitory role of PU.1 in the function of T follicular helper cells, germinal centers, and Tfh-dependent humoral immunity.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University