- Browse by Subject
Browsing by Subject "Genome-Wide Association Study (GWAS)"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Correction: Whole-genome sequencing analysis reveals new susceptibility loci and structural variants associated with progressive supranuclear palsy(Springer Nature, 2024-10-14) Wang, Hui; Chang, Timothy S.; Dombroski, Beth A.; Cheng, Po-Liang; Patil, Vishakha; Valiente-Banuet, Leopoldo; Farrell, Kurt; Mclean, Catriona; Molina-Porcel, Laura; Rajput, Alex; De Deyn, Peter Paul; Le Bastard, Nathalie; Gearing, Marla; Donker Kaat, Laura; Van Swieten, John C.; Dopper, Elise; Ghetti, Bernardino F.; Newell, Kathy L.; Troakes, Claire; de Yébenes, Justo G.; Rábano-Gutierrez, Alberto; Meller, Tina; Oertel, Wolfgang H.; Respondek, Gesine; Stamelou, Maria; Arzberger, Thomas; Roeber, Sigrun; Müller, Ulrich; Hopfner, Franziska; Pastor, Pau; Brice, Alexis; Durr, Alexandra; Le Ber, Isabelle; Beach, Thomas G.; Serrano, Geidy E.; Hazrati, Lili-Naz; Litvan, Irene; Rademakers, Rosa; Ross, Owen A.; Galasko, Douglas; Boxer, Adam L.; Miller, Bruce L.; Seeley, Willian W.; Van Deerlin, Vivanna M.; Lee, Edward B.; White, Charles L., III; Morris, Huw; de Silva, Rohan; Crary, John F.; Goate, Alison M.; Friedman, Jeffrey S.; Leung, Yuk Yee; Coppola, Giovanni; Naj, Adam C.; Wang, Li-San; P. S. P. genetics study group; Dalgard, Clifton; Dickson, Dennis W.; Höglinger, Günter U.; Schellenberg, Gerard D.; Geschwind, Daniel H.; Lee, Wan-Ping; Pathology and Laboratory Medicine, School of MedicineCorrection : Mol Neurodegeneration 19, 61 (2024) https://doi.org/10.1186/s13024-024-00747-3 The original article [1] erroneously gives a wrong affiliation for Ulrich Müller. His correct affiliation is Institute of Human Genetics, Justus-Liebig University Giessen, 35392 Giessen, Germany.Item A genome wide association study of fast beta EEG in families of European ancestry(Elsevier, 2017-05) Meyers, Jacquelyn L.; Zhang, Jian; Manz, Niklas; Rangaswamy, Madhavi; Kamarajan, Chella; Wetherill, Leah; Chorlian, David B.; Kang, Sun J.; Bauer, Lance; Hesselbrock, Victor; Kramer, John; Kuperman, Samuel; Nurnberger, John I., Jr.; Tischfield, Jay; Wang, Jen Chyong; Edenberg, Howard J.; Goate, Alison; Foroud, Tatiana; Porjesz, Bernice; Medical and Molecular Genetics, School of MedicineBACKGROUND: Differences in fast beta (20-28Hz) electroencephalogram (EEG) oscillatory activity distinguish some individuals with psychiatric and substance use disorders, suggesting that it may be a useful endophenotype for studying the genetics of disorders characterized by neural hyper-excitability. Despite the high heritability estimates provided by twin and family studies, there have been relatively few genetic studies of beta EEG, and to date only one genetic association finding has replicated (i.e., GABRA2). METHOD: In a sample of 1564 individuals from 117 families of European Ancestry (EA) drawn from the Collaborative Study on the Genetics of Alcoholism (COGA), we performed a Genome-Wide Association Study (GWAS) on resting-state fronto-central fast beta EEG power, adjusting regression models for family relatedness, age, sex, and ancestry. To further characterize genetic findings, we examined the functional and behavioral significance of GWAS findings. RESULTS: Three intronic variants located within DSE (dermatan sulfate epimerase) on 6q22 were associated with fast beta EEG at a genome wide significant level (p<5×10-8). The most significant SNP was rs2252790 (p<2.6×10-8; MAF=0.36; β=0.135). rs2252790 is an eQTL for ROS1 expressed most robustly in the temporal cortex (p=1.2×10-6) and for DSE/TSPYL4 expressed most robustly in the hippocampus (p=7.3×10-4; β=0.29). Previous studies have indicated that DSE is involved in a network of genes integral to membrane organization; gene-based tests indicated that several variants within this network (i.e., DSE, ZEB2, RND3, MCTP1, and CTBP2) were also associated with beta EEG (empirical p<0.05), and of these genes, ZEB2 and CTBP2 were associated with DSM-V Alcohol Use Disorder (AUD; empirical p<0.05).' DISCUSSION: In this sample of EA families enriched for AUDs, fast beta EEG is associated with variants within DSE on 6q22; the most significant SNP influences the mRNA expression of DSE and ROS1 in hippocampus and temporal cortex, brain regions important for beta EEG activity. Gene-based tests suggest evidence of association with related genes, ZEB2, RND3, MCTP1, CTBP2, and beta EEG. Converging data from GWAS, gene expression, and gene-networks presented in this study provide support for the role of genetic variants within DSE and related genes in neural hyperexcitability, and has highlighted two potential candidate genes for AUD and/or related neurological conditions: ZEB2 and CTBP2. However, results must be replicated in large, independent samples.Item Genome-wide association study in 176,678 Europeans reveals genetic loci for tanning response to sun exposure(Nature Publishing Group, 2018-05-08) Visconti, Alessia; Duffy, David L.; Liu, Fan; Zhu, Gu; Wu, Wenting; Chen, Yan; Hysi, Pirro G.; Zeng, Changqing; Sanna, Marianna; Iles, Mark M.; Kanetsky, Peter A.; Demenais, Florence; Hamer, Merel A.; Uitterlinden, Andre G.; Ikram, M. Arfan; Nijsten, Tamar; Martin, Nicholas G.; Kayser, Manfred; Spector, Tim D.; Han, Jiali; Bataille, Veronique; Falchi, Mario; Epidemiology, School of Public HealthThe skin's tendency to sunburn rather than tan is a major risk factor for skin cancer. Here we report a large genome-wide association study of ease of skin tanning in 176,678 subjects of European ancestry. We identify significant association with tanning ability at 20 loci. We confirm previously identified associations at six of these loci, and report 14 novel loci, of which ten have never been associated with pigmentation-related phenotypes. Our results also suggest that variants at the AHR/AGR3 locus, previously associated with cutaneous malignant melanoma the underlying mechanism of which is poorly understood, might act on disease risk through modulation of tanning ability.Item Whole-genome sequencing analysis reveals new susceptibility loci and structural variants associated with progressive supranuclear palsy(Springer Nature, 2024-08-16) Wang, Hui; Chang, Timothy S.; Dombroski, Beth A.; Cheng, Po-Liang; Patil, Vishakha; Valiente-Banuet, Leopoldo; Farrell, Kurt; Mclean, Catriona; Molina-Porcel, Laura; Rajput, Alex; De Deyn, Peter Paul; Le Bastard, Nathalie; Gearing, Marla; Donker Kaat, Laura; Van Swieten, John C.; Dopper, Elise; Ghetti, Bernardino F.; Newell, Kathy L.; Troakes, Claire; de Yébenes, Justo G.; Rábano-Gutierrez, Alberto; Meller, Tina; Oertel, Wolfgang H.; Respondek, Gesine; Stamelou, Maria; Arzberger, Thomas; Roeber, Sigrun; Müller, Ulrich; Hopfner, Franziska; Pastor, Pau; Brice, Alexis; Durr, Alexandra; Le Ber, Isabelle; Beach, Thomas G.; Serrano, Geidy E.; Hazrati, Lili-Naz; Litvan, Irene; Rademakers, Rosa; Ross, Owen A.; Galasko, Douglas; Boxer, Adam L.; Miller, Bruce L.; Seeley, Willian W.; Van Deerlin, Vivanna M.; Lee, Edward B.; White, Charles L., III; Morris, Huw; de Silva, Rohan; Crary, John F.; Goate, Alison M.; Friedman, Jeffrey S.; Leung, Yuk Yee; Coppola, Giovanni; Naj, Adam C.; Wang, Li-San; P. S. P. genetics study group; Dalgard, Clifton; Dickson, Dennis W.; Höglinger, Günter U.; Schellenberg, Gerard D.; Geschwind, Daniel H.; Lee, Wan-Ping; Pathology and Laboratory Medicine, School of MedicineBackground: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73 × 10-3) in PSP. Conclusions: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.Item Whole-Genome Sequencing Analysis Reveals New Susceptibility Loci and Structural Variants Associated with Progressive Supranuclear Palsy(medRxiv, 2024-01-30) Wang, Hui; Chang, Timothy S.; Dombroski, Beth A.; Cheng, Po-Liang; Patil, Vishakha; Valiente-Banuet, Leopoldo; Farrell, Kurt; Mclean, Catriona; Molina-Porcel, Laura; Rajput, Alex; De Deyn, Peter Paul; Le Bastard, Nathalie; Gearing, Marla; Donker Kaat, Laura; Van Swieten, John C.; Dopper, Elise; Ghetti, Bernardino F.; Newell, Kathy L.; Troakes, Claire; de Yébenes, Justo G.; Rábano-Gutierrez, Alberto; Meller, Tina; Oertel, Wolfgang H.; Respondek, Gesine; Stamelou, Maria; Arzberger, Thomas; Roeber, Sigrun; Müller, Ulrich; Hopfner, Franziska; Pastor, Pau; Brice, Alexis; Durr, Alexandra; Le Ber, Isabelle; Beach, Thomas G.; Serrano, Geidy E.; Hazrati, Lili-Naz; Litvan, Irene; Rademakers, Rosa; Ross, Owen A.; Galasko, Douglas; Boxer, Adam L.; Miller, Bruce L.; Seeley, Willian W.; Van Deerlin, Vivanna M.; Lee, Edward B.; White, Charles L., III; Morris, Huw; de Silva, Rohan; Crary, John F.; Goate, Alison M.; Friedman, Jeffrey S.; Leung, Yuk Yee; Coppola, Giovanni; Naj, Adam C.; Wang, Li-San; PSP genetics study group; Dickson, Dennis W.; Höglinger, Günter U.; Schellenberg, Gerard D.; Geschwind, Daniel H.; Lee, Wan-Ping; Pathology and Laboratory Medicine, School of MedicineBackground: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.