ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Genetic factors"

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    COMT Val 158 Met polymorphism is associated with post-traumatic stress disorder and functional outcome following mild traumatic brain injury
    (Elsevier, 2017-01) Winkler, Ethan A.; Yue, John K.; Ferguson, Adam R.; Temkin, Nancy R.; Stein, Murray B.; Barber, Jason; Yuh, Esther L.; Sharma, Sourabh; Satris, Gabriela G.; McAllister, Thomas W.; Rosand, Jonathan; Sorani, Marco D.; Lingsma, Hester F.; Tarapore, Phiroz E.; Burchard, Esteban G.; Hu, Donglei; Eng, Celeste; Wang, Kevin K.W.; Mukherjee, Pratik; Okonkwo, David O.; Diaz-Arrastia, Ramon; Manley, Geoffrey T.; TRACK-TBI Investigators; Psychiatry, School of Medicine
    Mild traumatic brain injury (mTBI) results in variable clinical trajectories and outcomes. The source of variability remains unclear, but may involve genetic variations, such as single nucleotide polymorphisms (SNPs). A SNP in catechol-o-methyltransferase (COMT) is suggested to influence development of post-traumatic stress disorder (PTSD), but its role in TBI remains unclear. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val158Met polymorphism is associated with PTSD and global functional outcome as measured by the PTSD Checklist - Civilian Version and Glasgow Outcome Scale Extended (GOSE), respectively. Results in 93 predominately Caucasian subjects with mTBI show that the COMT Met158 allele is associated with lower incidence of PTSD (univariate odds ratio (OR) of 0.25, 95% CI [0.09-0.69]) and higher GOSE scores (univariate OR 2.87, 95% CI [1.20-6.86]) 6-months following injury. The COMT Val158Met genotype and PTSD association persists after controlling for race (multivariable OR of 0.29, 95% CI [0.10-0.83]) and pre-existing psychiatric disorders/substance abuse (multivariable OR of 0.32, 95% CI [0.11-0.97]). PTSD emerged as a strong predictor of poorer outcome on GOSE (multivariable OR 0.09, 95% CI [0.03-0.26]), which persists after controlling for age, GCS, and race. When accounting for PTSD in multivariable analysis, the association of COMT genotype and GOSE did not remain significant (multivariable OR 1.73, 95% CI [0.69-4.35]). Whether COMT genotype indirectly influences global functional outcome through PTSD remains to be determined and larger studies in more diverse populations are needed to confirm these findings.
  • Loading...
    Thumbnail Image
    Item
    COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury
    (Springer, 2016-01) Winker, Ethan A.; Yue, John K.; McAllister, Thomas W.; Temkin, Nancy R.; Oh, Sam S.; Burchard, Esteban G.; Hu, Donglei; Ferguson, Adam R.; Lingsma, Hester F.; Burke, John F.; Sorani, Marco D.; Rosand, Jonathan; Yuh, Esther L.; Barber, Jason; Tarapore, Phiroz E.; Gardner, Raquel C.; Sharma, Sourabh; Satris, Gabriela G.; Eng, Celeste; Puccio, Ava M.; Wang, Kevin K.W.; Mukherjee, Pratik; Valadka, Alex B.; Okonkwo, David O.; Diaz-Arrastia, Ramon; Manley, Geoffrey T.; Department of Psychiatry, IU School of Medicine
    Mild traumatic brain injury (mTBI) results in variable clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism in catechol-o-methyltransferase (COMT), an enzyme which degrades catecholamine neurotransmitters, may influence cognitive deficits following moderate and/or severe head trauma. However, this has been disputed, and its role in mTBI has not been studied. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val (158) Met polymorphism influences outcome on a cognitive battery 6 months following mTBI--Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), Trail Making Test (TMT) Trail B minus Trail A time, and California Verbal Learning Test, Second Edition Trial 1-5 Standard Score (CVLT-II). All patients had an emergency department Glasgow Coma Scale (GCS) of 13-15, no acute intracranial pathology on head CT, and no polytrauma as defined by an Abbreviated Injury Scale (AIS) score of ≥3 in any extracranial region. Results in 100 subjects aged 40.9 (SD 15.2) years (COMT Met (158) /Met (158) 29 %, Met (158) /Val (158) 47 %, Val (158) /Val (158) 24 %) show that the COMT Met (158) allele (mean 101.6 ± SE 2.1) associates with higher nonverbal processing speed on the WAIS-PSI when compared to Val (158) /Val (158) homozygotes (93.8 ± SE 3.0) after controlling for demographics and injury severity (mean increase 7.9 points, 95 % CI [1.4 to 14.3], p = 0.017). The COMT Val (158) Met polymorphism did not associate with mental flexibility on the TMT or with verbal learning on the CVLT-II. Hence, COMT Val (158) Met may preferentially modulate nonverbal cognition following uncomplicated mTBI.Registry: ClinicalTrials.gov Identifier NCT01565551.
  • Loading...
    Thumbnail Image
    Item
    DRD2 C957T polymorphism is associated with improved 6-month verbal learning following traumatic brain injury
    (Springer, 2017-01) Yue, John K.; Winkler, Ethan A.; Rick, Jonathan W.; Burke, John F.; McAllister, Thomas W.; Oh, Sam S.; Burchard, Esteban G.; Hu, Donglei; Rosand, Jonathan; Temkin, Nancy R.; Korley, Frederick K.; Sorani, Marco D.; Ferguson, Adam R.; Lingsma, Hester F.; Sharma, Sourabh; Robinson, Caitlin K.; Yuh, Esther L.; Tarapore, Phiroz E.; Wang, Kevin K.W.; Puccio, Ava M.; Mukherjee, Pratik; Diaz-Arrastia, Ramon; Gordon, Wayne A.; Valadka, Alex B.; Okonkwo, David O.; Manley, Geoffrey T.; TRACK-TBI Investigators; Psychiatry, School of Medicine
    Traumatic brain injury (TBI) often leads to heterogeneous clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism (SNP) in the dopamine D2 receptor (DRD2) may influence cognitive deficits following TBI. However, part of the association with DRD2 has been attributed to genetic variability within the adjacent ankyrin repeat and kinase domain containing 1 protein (ANKK1). Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether a novel DRD2 C957T polymorphism (rs6277) influences outcome on a cognitive battery at 6 months following TBI-California Verbal Learning Test (CVLT-II), Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), and Trail Making Test (TMT). Results in 128 Caucasian subjects show that the rs6277 T-allele associates with better verbal learning and recall on CVLT-II Trials 1-5 (T-allele carrier 52.8 ± 1.3 points, C/C 47.9 ± 1.7 points; mean increase 4.9 points, 95% confidence interval [0.9 to 8.8]; p = 0.018), Short-Delay Free Recall (T-carrier 10.9 ± 0.4 points, C/C 9.7 ± 0.5 points; mean increase 1.2 points [0.1 to 2.5]; p = 0.046), and Long-Delay Free Recall (T-carrier 11.5 ± 0.4 points, C/C 10.2 ± 0.5 points; mean increase 1.3 points [0.1 to 2.5]; p = 0.041) after adjusting for age, education years, Glasgow Coma Scale, presence of acute intracranial pathology on head computed tomography scan, and genotype of the ANKK1 SNP rs1800497 using multivariable regression. No association was found between DRD2 C947T and non-verbal processing speed (WAIS-PSI) or mental flexibility (TMT) at 6 months. Hence, DRD2 C947T (rs6277) may be associated with better performance on select cognitive domains independent of ANKK1 following TBI.
  • Loading...
    Thumbnail Image
    Item
    Genes contributing to the development of alcoholism: an overview
    (National Institute on Alcohol Abuse and Alcoholism, 2012) Edenberg, Howard J.; Biochemistry and Molecular Biology, School of Medicine
    Genetic factors (i.e., variations in specific genes) account for a substantial portion of the risk for alcoholism. However, identifying those genes and the specific variations involved is challenging. Researchers have used both case-control and family studies to identify genes related to alcoholism risk. In addition, different strategies such as candidate gene analyses and genome-wide association studies have been used. The strongest effects have been found for specific variants of genes that encode two enzymes involved in alcohol metabolism-alcohol dehydrogenase and aldehyde dehydrogenase. Accumulating evidence indicates that variations in numerous other genes have smaller but measurable effects.
  • Loading...
    Thumbnail Image
    Item
    Genes Encoding Enzymes Involved in Ethanol Metabolism
    (National Institute on Alcohol Abuse and Alcoholism, 2012) Hurley, Thomas D.; Edenberg, Howard J.; Biochemistry and Molecular Biology, School of Medicine
    The effects of beverage alcohol (ethanol) on the body are determined largely by the rate at which it and its main breakdown product, acetaldehyde, are metabolized after consumption. The main metabolic pathway for ethanol involves the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Seven different ADHs and three different ALDHs that metabolize ethanol have been identified. The genes encoding these enzymes exist in different variants (i.e., alleles), many of which differ by a single DNA building block (i.e., single nucleotide polymorphisms [SNPs]). Some of these SNPs result in enzymes with altered kinetic properties. For example, certain ADH1B and ADH1C variants that are commonly found in East Asian populations lead to more rapid ethanol breakdown and acetaldehyde accumulation in the body. Because acetaldehyde has harmful effects on the body, people carrying these alleles are less likely to drink and have a lower risk of alcohol dependence. Likewise, an ALDH2 variant with reduced activity results in acetaldehyde buildup and also has a protective effect against alcoholism. In addition to affecting drinking behaviors and risk for alcoholism, ADH and ALDH alleles impact the risk for esophageal cancer.
  • Loading...
    Thumbnail Image
    Item
    IFN-α Induces Heterogenous ROS Production in Human β-Cells
    (bioRxiv, 2025-02-20) Wagner, Leslie E.; Melnyk, Olha; Turner, Abigail; Duffett, Bryce E.; Muralidharan, Charanya; Martinez-Irizarry, Michelle M.; Arvin, Matthew C.; Orr, Kara S.; Manduchi, Elisabetta; Kaestner, Klaus H.; Brozinick, Joseph T.; Linnemann, Amelia K.; Biochemistry and Molecular Biology, School of Medicine
    Type 1 diabetes (T1D) is a multifactorial disease involving genetic and environmental factors, including viral infection. We investigated the impact of interferon alpha (IFN-α), a cytokine produced during the immune response to viral infection or the presence of un-edited endogenous double-stranded RNAs, on human β-cell physiology. Intravital microscopy on transplanted human islets using a β-cell-selective reactive oxygen species (ROS) biosensor (RIP1-GRX1-roGFP2), revealed a subset of human β-cells that acutely produce ROS in response to IFN-α. Comparison to Integrated Islet Distribution Program (IIDP) phenotypic data revealed that healthier donors had more ROS accumulating cells. In vitro IFN-α treatment of human islets similarly elicited a heterogenous increase in superoxide production that originated in the mitochondria. To determine the unique molecular signature predisposing cells to IFN-α stimulated ROS production, we flow sorted human islets treated with IFN-α. RNA sequencing identified genes involved in inflammatory and immune response in the ROS-producing cells. Comparison with single cell RNA-Seq datasets available through the Human Pancreas Analysis Program (HPAP) showed that genes upregulated in ROS-producing cells are enriched in control β-cells rather than T1D donors. Combined, these data suggest that IFN-α stimulates mitochondrial ROS production in healthy human β-cells, potentially predicting a more efficient antiviral response.
  • Loading...
    Thumbnail Image
    Item
    Relevance of genetic testing in the gene-targeted trial era: the Rostock Parkinson's disease study
    (Oxford University Press, 2024) Westenberger, Ana; Skrahina, Volha; Usnich, Tatiana; Beetz, Christian; Vollstedt, Eva-Juliane; Laabs, Björn-Hergen; Paul, Jefri J.; Curado, Filipa; Skobalj, Snezana; Gaber, Hanaa; Olmedillas, Maria; Bogdanovic, Xenia; Ameziane, Najim; Schell, Nathalie; Aasly, Jan Olav; Afshari, Mitra; Agarwal, Pinky; Aldred, Jason; Alonso-Frech, Fernando; Anderson, Roderick; Araújo, Rui; Arkadir, David; Avenali, Micol; Balal, Mehmet; Benizri, Sandra; Bette, Sagari; Bhatia, Perminder; Bonello, Michael; Braga-Neto, Pedro; Brauneis, Sarah; Costa Cardoso, Francisco Eduardo; Cavallieri, Francesco; Classen, Joseph; Cohen, Lisa; Coletta, Della; Crosiers, David; Cullufi, Paskal; Dashtipour, Khashayar; Demirkiran, Meltem; de Carvalho Aguiar, Patricia; De Rosa, Anna; Djaldetti, Ruth; Dogu, Okan; Dos Santos Ghilardi, Maria Gabriela; Eggers, Carsten; Elibol, Bulent; Ellenbogen, Aaron; Ertan, Sibel; Fabiani, Giorgio; Falkenburger, Björn H.; Farrow, Simon; Fay-Karmon, Tsviya; Ferencz, Gerald J.; Fonoff, Erich Talamoni; Fragoso, Yara Dadalti; Genç, Gençer; Gorospe, Arantza; Grandas, Francisco; Gruber, Doreen; Gudesblatt, Mark; Gurevich, Tanya; Hagenah, Johann; Hanagasi, Hasmet A.; Hassin-Baer, Sharon; Hauser, Robert A.; Hernández-Vara, Jorge; Herting, Birgit; Hinson, Vanessa K.; Hogg, Elliot; Hu, Michele T.; Hummelgen, Eduardo; Hussey, Kelly; Infante, Jon; Isaacson, Stuart H.; Jauma, Serge; Koleva-Alazeh, Natalia; Kuhlenbäumer, Gregor; Kühn, Andrea; Litvan, Irene; López-Manzanares, Lydia; Luxmore, McKenzie; Manandhar, Sujeena; Marcaud, Veronique; Markopoulou, Katerina; Marras, Connie; McKenzie, Mark; Matarazzo, Michele; Merello, Marcelo; Mollenhauer, Brit; Morgan, John C.; Mullin, Stephen; Musacchio, Thomas; Myers, Bennett; Negrotti, Anna; Nieves, Anette; Nitsan, Zeev; Oskooilar, Nader; Öztop-Çakmak, Özgür; Pal, Gian; Pavese, Nicola; Percesepe, Antonio; Piccoli, Tommaso; Pinto de Souza, Carolina; Prell, Tino; Pulera, Mark; Raw, Jason; Reetz, Kathrin; Reiner, Johnathan; Rosenberg, David; Ruiz-Lopez, Marta; Ruiz Martinez, Javier; Sammler, Esther; Santos-Lobato, Bruno Lopes; Saunders-Pullman, Rachel; Schlesinger, Ilana; Schofield, Christine M.; Schumacher-Schuh, Artur F.; Scott, Burton; Sesar, Ángel; Shafer, Stuart J.; Sheridan, Ray; Silverdale, Monty; Sophia, Rani; Spitz, Mariana; Stathis, Pantelis; Stocchi, Fabrizio; Tagliati, Michele; Tai, Yen F.; Terwecoren, Annelies; Thonke, Sven; Tönges, Lars; Toschi, Giulia; Tumas, Vitor; Urban, Peter Paul; Vacca, Laura; Vandenberghe, Wim; Valente, Enza Maria; Valzania, Franco; Vela-Desojo, Lydia; Weill, Caroline; Weise, David; Wojcieszek, Joanne; Wolz, Martin; Yahalom, Gilad; Yalcin-Cakmakli, Gul; Zittel, Simone; Zlotnik, Yair; Kandaswamy, Krishna K.; Balck, Alexander; Hanssen, Henrike; Borsche, Max; Lange, Lara M.; Csoti, Ilona; Lohmann, Katja; Kasten, Meike; Brüggemann, Norbert; Rolfs, Arndt; Klein, Christine; Bauer, Peter; Neurology, School of Medicine
    Estimates of the spectrum and frequency of pathogenic variants in Parkinson's disease (PD) in different populations are currently limited and biased. Furthermore, although therapeutic modification of several genetic targets has reached the clinical trial stage, a major obstacle in conducting these trials is that PD patients are largely unaware of their genetic status and, therefore, cannot be recruited. Expanding the number of investigated PD-related genes and including genes related to disorders with overlapping clinical features in large, well-phenotyped PD patient groups is a prerequisite for capturing the full variant spectrum underlying PD and for stratifying and prioritizing patients for gene-targeted clinical trials. The Rostock Parkinson's disease (ROPAD) study is an observational clinical study aiming to determine the frequency and spectrum of genetic variants contributing to PD in a large international cohort. We investigated variants in 50 genes with either an established relevance for PD or possible phenotypic overlap in a group of 12 580 PD patients from 16 countries [62.3% male; 92.0% White; 27.0% positive family history (FH+), median age at onset (AAO) 59 years] using a next-generation sequencing panel. Altogether, in 1864 (14.8%) ROPAD participants (58.1% male; 91.0% White, 35.5% FH+, median AAO 55 years), a PD-relevant genetic test (PDGT) was positive based on GBA1 risk variants (10.4%) or pathogenic/likely pathogenic variants in LRRK2 (2.9%), PRKN (0.9%), SNCA (0.2%) or PINK1 (0.1%) or a combination of two genetic findings in two genes (∼0.2%). Of note, the adjusted positive PDGT fraction, i.e. the fraction of positive PDGTs per country weighted by the fraction of the population of the world that they represent, was 14.5%. Positive PDGTs were identified in 19.9% of patients with an AAO ≤ 50 years, in 19.5% of patients with FH+ and in 26.9% with an AAO ≤ 50 years and FH+. In comparison to the idiopathic PD group (6846 patients with benign variants), the positive PDGT group had a significantly lower AAO (4 years, P = 9 × 10-34). The probability of a positive PDGT decreased by 3% with every additional AAO year (P = 1 × 10-35). Female patients were 22% more likely to have a positive PDGT (P = 3 × 10-4), and for individuals with FH+ this likelihood was 55% higher (P = 1 × 10-14). About 0.8% of the ROPAD participants had positive genetic testing findings in parkinsonism-, dystonia/dyskinesia- or dementia-related genes. In the emerging era of gene-targeted PD clinical trials, our finding that ∼15% of patients harbour potentially actionable genetic variants offers an important prospect to affected individuals and their families and underlines the need for genetic testing in PD patients. Thus, the insights from the ROPAD study allow for data-driven, differential genetic counselling across the spectrum of different AAOs and family histories and promote a possible policy change in the application of genetic testing as a routine part of patient evaluation and care in PD.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University