- Browse by Subject
Browsing by Subject "Genetic animal models"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Aging aggravates intervertebral disc degeneration by regulating transcription factors toward chondrogenesis(Wiley, 2020-02) Silva, Matthew J.; Holguin, Nilsson; Anatomy and Cell Biology, School of MedicineOsterix is a critical transcription factor of mesenchymal stem cell fate, where its loss or loss of Wnt signaling diverts differentiation to a chondrocytic lineage. Intervertebral disc (IVD) degeneration activates the differentiation of prehypertrophic chondrocyte-like cells and inactivates Wnt signaling, but its interactive role with osterix is unclear. First, compared to young-adult (5 mo), mechanical compression of old (18 mo) IVD induced greater IVD degeneration. Aging (5 vs 12 mo) and/or compression reduced the transcription of osterix and notochordal marker T by 40-75%. Compression elevated the transcription of hypertrophic chondrocyte marker MMP13 and pre-osterix transcription factor RUNX2, but less so in 12 mo IVD. Next, using an Ai9/td reporter and immunohistochemical staining, annulus fibrosus and nucleus pulposus cells of young-adult IVD expressed osterix, but aging and compression reduced its expression. Lastly, in vivo LRP5-deficiency in osterix-expressing cells inactivated Wnt signaling in the nucleus pulposus by 95%, degenerated the IVD to levels similar to aging and compression, reduced the biomechanical properties by 45-70%, and reduced the transcription of osterix, notochordal markers and chondrocytic markers by 60-80%. Overall, these data indicate that age-related inactivation of Wnt signaling in osterix-expressing cells may limit regeneration by depleting the progenitors and attenuating the expansion of chondrocyte-like cells.Item Diet X Gene Interactions Control Femoral Bone Adaptation to Low Dietary Calcium(Wiley, 2022-08-19) Chanpaisaeng, Krittikan; Reyes-Fernandez, Perla C.; Dilkes, Brian; Fleet, James C.; Physical Therapy, School of Health and Human SciencesGenetics and dietary calcium (Ca) are each critical regulators of peak bone mass but it is unclear how genetics alters the physiologic response of bone to dietary Ca restriction (RCR). Here, we conducted genetic mapping in C57BL/6J × DBA/2J (BXD) recombinant inbred mouse lines to identify environmentally sensitive loci controlling whole-bone mass (bone mineral density [BMD], bone mineral content [BMC]), distal trabecular bone, and cortical bone midshaft of the femur. Mice were fed adequate (basal) or low Ca diets from 4-12 weeks of age. Femurs were then examined by dual-energy X-ray absorptiometry (DXA) and micro-computed tomography (μCT). Body size-corrected residuals were used for statistical analysis, genetic mapping, and to estimate narrow sense heritability (h2). Genetics had a strong impact on femoral traits (eg, bone volume fraction [BV/TV] basal Ca, h2 = 0.60) as well as their RCR (eg, BV/TV, h2 = 0.32). Quantitative trait locus (QTL) mapping identified up to six loci affecting each bone trait. A subset of loci was detected in both diet groups, providing replication of environmentally robust genetic effects. Several loci control multiple bone phenotypes suggesting the existence of genetic pleiotropy. QTL controlling the bone RCR did not overlap with basal diet QTL, demonstrating genetic independence of those traits. Candidate genes underlying select multi-trait loci were prioritized by protein coding effects or gene expression differences in bone cells. These include candidate alleles in Rictor (chromosome [chr] 15) and Egfl7 (chr 2) at loci affecting bone in the basal or low Ca groups and in Msr1 (chr 8), Apc, and Camk4 (chr 18) at loci affecting RCR. By carefully controlling dietary Ca and measuring traits in age-matched mice we identified novel genetic loci determining bone mass/microarchitecture of the distal femur as well as their physiologic adaptation to inadequate dietary Ca intake.Item Glucocorticoid induced osteoporosis and mechanisms of intervention(2017-03) Sato, Amy Yoshiko; Bellido, Teresita; Plotkin, Lilian I.; Pavalko, Fredrick M.; Robling, Alexander G.Glucocorticoid excess is a leading cause of osteoporosis. The loss of bone mass and strength corresponds to the increase in fractures exhibited after three months of glucocorticoid therapy. Glucocorticoids induce the bone cellular responses of deceased bone formation, increased osteoblast/osteocyte apoptosis, and transient increased bone resorption, which result in rapid bone loss and degradation of bone microarchitecture. The current standard of care for osteoporosis is bisphosphonate treatment; however, these agents further suppress bone formation and increase osteonecrosis and low energy atypical fracture risks. Thus, there is an unmet need for interventions that protect from glucocorticoid therapy. The purpose of these studies was to investigate novel mechanisms that potentially interfere with glucocorticoid-induced bone loss. We chose to explore pathways that regulate endoplasmic reticulum stress, the canonical Wnt pathway, and Pyk2 activity. Pharmacologic reduction of endoplasmic reticulum stress through salubrinal administration protected against glucocorticoid-induced bone loss by preservation of bone formation and osteoblast/osteocyte viability. In contrast, inhibition of Wnt antagonist Sost/sclerostin and inhibition of Pyk2 signaling did not prevent glucocorticoid-induced reductions in bone formation; however, both Sost/sclerostin and Pyk2 deficiency protected against bone loss through inhibition of increases in resorption. Overall, these studies demonstrate the significant contributions of reductions in bone formation, increased osteoblast/osteocyte apoptosis, and elevations in resorption to the rapid 6-12% bone loss exhibited during the first year of glucocorticoid therapy. However, glucocorticoid excess also induces skeletal muscle weakness, which is not reversed by bisphosphonate treatment or the interventions reported here of salubrinal, Sost/sclerostin inhibition, or Pyk2 deficiency. Further, the novel finding of increased E3 ubiquitin ligase atrophy signaling induce by glucocorticoids in both bone and muscle, by tissue-specific upstream mechanisms, provides opportunities for therapeutic combination strategies. Thus, future studies are warranted to investigate the role of E3 ubiquitin ligase signaling in the deleterious glucocorticoid effects of bone and muscle.Item Interaction of sexual dimorphism and gene dosage imbalance in skeletal deficits associated with Down syndrome(Elsevier, 2020-04-17) Thomas, Jared R.; LaCombe, Jonathan; Long, Rachel; Lana-Elola, Eva; Watson-Scales, Sheona; Wallace, Joseph M.; Fisher, Elizabeth M. C.; Tybulewicz, Victor L. J.; Roper, Randall J.; Biology, School of Sciencepresent with skeletal abnormalities typified by craniofacial features, short stature and low bone mineral density (BMD). Differences in skeletal deficits between males and females with DS suggest a sexual dimorphism in how trisomy affects bone. Dp1Tyb mice contain three copies of all of the genes on mouse chromosome 16 that are homologous to human chromosome 21, males and females are fertile, and therefore are an excellent model to test the hypothesis that gene dosage influences the sexual dimorphism of bone abnormalities in DS. Dp1Tyb as compared to control littermate mice at time points associated with bone accrual (6 weeks) and skeletal maturity (16 weeks) showed deficits in BMD and trabecular architecture that occur largely through interactions between sex and genotype and resulted in lower percent bone volume in all female and Dp1Tyb male mice. Cortical bone in Dp1Tyb as compared to control mice exhibited different changes over time influenced by sex × genotype interactions including reduced cortical area in both male and female Dp1Tyb mice. Mechanical testing analyses suggested deficits in whole bone properties such as bone mass and geometry, but improved material properties in female and Dp1Tyb mice. Sexual dimorphisms and the influence of trisomic gene dosage differentially altered cellular properties of male and female Dp1Tyb bone. These data establish sex, gene dosage, skeletal site and age as important factors in skeletal development of DS model mice, paving the way for identification of the causal dosage-sensitive genes. Skeletal differences in developing male and female Dp1Tyb DS model mice replicated differences in less-studied adolescents with DS and established a foundation to understand the etiology of trisomic bone deficits.Item Nf1 haploinsufficiency alters myeloid lineage commitment and function, leading to deranged skeletal homeostasis(Wiley, 2015-10) Rhodes, Steven D.; Yang, Hao; Dong, Ruizhi; Menon, Keshav; He, Yongzheng; Li, Zhaomin; Chen, Shi; Staser, Karl W.; Jiang, Li; Department of Anatomy & Cell Biology, IU School of MedicineAlthough nullizygous loss of NF1 leads to myeloid malignancies, haploinsufficient loss of NF1 (Nf1) has been shown to contribute to osteopenia and osteoporosis which occurs in approximately 50% of neurofibromatosis type 1 (NF1) patients. Bone marrow mononuclear cells of haploinsufficient NF1 patients and Nf1(+/-) mice exhibit increased osteoclastogenesis and accelerated bone turnover; however, the culprit hematopoietic lineages responsible for perpetuating these osteolytic manifestations have yet to be elucidated. Here we demonstrate that conditional inactivation of a single Nf1 allele within the myeloid progenitor cell population (Nf1-LysM) is necessary and sufficient to promote multiple osteoclast gains-in-function, resulting in enhanced osteoclastogenesis and accelerated osteoclast bone lytic activity in response to proresorptive challenge in vivo. Surprisingly, mice conditionally Nf1 heterozygous in mature, terminally differentiated osteoclasts (Nf1-Ctsk) do not exhibit any of these skeletal phenotypes, indicating a critical requirement for Nf1 haploinsufficiency at a more primitive/progenitor stage of myeloid development in perpetuating osteolytic activity. We further identified p21Ras-dependent hyperphosphorylation of Pu.1 within the nucleus of Nf1 haploinsufficient myelomonocytic osteoclast precursors, providing a novel therapeutic target for the potential treatment of NF1 associated osteolytic manifestations.Item Protection From Glucocorticoid-Induced Osteoporosis by Anti-Catabolic Signaling in the Absence of Sost/Sclerostin(Wiley, 2016-10) Sato, Amy Y.; Cregor, Meloney; Delgado-Calle, Jesus; Condon, Keith W.; Allen, Matthew R.; Peacock, Munro; Plotkin, Lilian I.; Bellido, Teresita; Anatomy, Cell Biology and Physiology, School of MedicineExcess of glucocorticoids, either due to disease or iatrogenic, increases bone resorption and decreases bone formation and is a leading cause of osteoporosis and bone fractures worldwide. Improved therapeutic strategies are sorely needed. We investigated whether activating Wnt/β-catenin signaling protects against the skeletal actions of glucocorticoids, using female mice lacking the Wnt/β-catenin antagonist and bone formation inhibitor Sost. Glucocorticoids decreased the mass, deteriorated the microarchitecture, and reduced the structural and material strength of bone in wild-type (WT), but not in Sost-/- mice. The high bone mass exhibited by Sost-/- mice is due to increased bone formation with unchanged resorption. However, unexpectedly, preservation of bone mass and strength in Sost-/- mice was due to prevention of glucocorticoid-induced bone resorption and not to restoration of bone formation. In WT mice, glucocorticoids increased the expression of Sost and the number of sclerostin-positive osteocytes, and altered the molecular signature of the Wnt/β-catenin pathway by decreasing the expression of genes associated with both anti-catabolism, including osteoprotegerin (OPG), and anabolism/survival, such as cyclin D1. In contrast in Sost-/- mice, glucocorticoids did not decrease OPG but still reduced cyclin D1. Thus, in the context of glucocorticoid excess, activation of Wnt/β-catenin signaling by Sost/sclerostin deficiency sustains bone integrity by opposing bone catabolism despite markedly reduced bone formation and increased apoptosis. This crosstalk between glucocorticoids and Wnt/β-catenin signaling could be exploited therapeutically to halt resorption and bone loss induced by glucocorticoids and to inhibit the exaggerated bone formation in diseases of unwanted hyperactivation of Wnt/β-catenin signaling.Item Sclerostin Depletion Induces Inflammation in the Bone Marrow of Mice(MDPI, 2021-08-24) Donham, Cristine; Chicana, Betsabel; Robling, Alexander G.; Mohamed, Asmaa; Elizaldi, Sonny; Chi, Michael; Freeman, Brian; Millan, Alberto; Murugesh, Deepa K.; Hum, Nicholas R.; Sebastian, Aimy; Loots, Gabriela G.; Manilay, Jennifer O.; Anatomy and Cell Biology, School of MedicineRomosozumab, a humanized monoclonal antibody specific for sclerostin (SOST), has been approved for treatment of postmenopausal women with osteoporosis at a high risk for fracture. Previous work in sclerostin global knockout (Sost−/−) mice indicated alterations in immune cell development in the bone marrow (BM), which could be a possible side effect in romosozumab-treated patients. Here, we examined the effects of short-term sclerostin depletion in the BM on hematopoiesis in young mice receiving sclerostin antibody (Scl-Ab) treatment for 6 weeks, and the effects of long-term Sost deficiency on wild-type (WT) long-term hematopoietic stem cells transplanted into older cohorts of Sost−/− mice. Our analyses revealed an increased frequency of granulocytes in the BM of Scl-Ab-treated mice and WT→Sost−/− chimeras, indicating myeloid-biased differentiation in Sost-deficient BM microenvironments. This myeloid bias extended to extramedullary hematopoiesis in the spleen and was correlated with an increase in inflammatory cytokines TNFα, IL-1α, and MCP-1 in Sost−/− BM serum. Additionally, we observed alterations in erythrocyte differentiation in the BM and spleen of Sost−/− mice. Taken together, our current study indicates novel roles for Sost in the regulation of myelopoiesis and control of inflammation in the BM.Item Skeletal Deficits in Male and Female Mouse Models of Down Syndrome(2020-05) Thomas, Jared; Roper, Randall J.; Wallace, Joseph M.; Li, Jiliang; Marrs, JamesDown syndrome (DS) is a genetic disorder that results from triplication of human chromosome 21 (Hsa21) and occurs in around 1 in 1000 live births. All individuals with DS present with skeletal abnormalities typified by craniofacial features, short stature and low bone mineral density (BMD). Differences between males and females with DS suggest a sexual dimorphism in how trisomy affects skeletal deficits associated with trisomy 21 (Ts21). Previous investigations of skeletal abnormalities in DS have varied methodology, sample sizes and ages making the underlying causes of deficits uncertain. Mouse models of DS were used to characterize skeletal abnormalities, but the genetic and developmental origin remain unidentified. Over-expression Dyrk1a, found on Hsa21 and mouse chromosome 16 (Mmu16) has been linked to cognitive deficits and skeletal deficiencies. Dp1Tyb mice contain three copies of all of the genes on Mmu16 that are homologous to Hsa21, males and females are fertile, and therefore are an excellent model to test the hypothesis that gene dosage influences the sexual dimorphism of bone abnormalities in DS. Dp1Tyb at 6 weeks 16 weeks showed distinctive abnormalities in BMD, trabecular architecture, and reduced bone strength over time that occur generally through an interaction between sex and genotype. Increased gene dosage and sexual dimorphism in Dp1Tyb mice revealed distinct phenotypes in bone formation and resorption. To assess how Dyrk1a influences the activity and function of osteoblasts Ts65Dn female trisomic mice, female mice with a floxed Dyrk1a gene (Ts65Dn, Dyrk1afl/+) were be bred to Osx1-GFP::Cre+ mice to generate Ts65Dn animals with a reduced copy of Dyrk1a in mature osteoblast cells. Female Ts65Dn,Dyrk1a+/+/+ and Ts65Dn,Dyrk1a+/+/-displayed significant defects in both trabecular architecture and cortical geometry. Ultimate force was reduced in trisomic animals, suggesting whole bone and tissue level properties are not adversely affected by trisomy. Reduction of Dyrk1a functional copy number in female mice did not improve skeletal deficits in an otherwise trisomic animal. Dyrk1a may not alter osteoblast cellular activity in an autonomous manner in trisomic female mice. These data establish sex, gene dosage, skeletal site and age as important factors in skeletal development of the skeleton in DS mice, potentially paving the way for identification of the causal dosage-sensitive genes in both male and female animals.Item Skeletal Dynamics of Down Syndrome: A Developing Perspective(Elsevier, 2020-04) LaCombe, Jonathan M.; Roper, Randall J.; Biology, School of ScienceIndividuals with Down syndrome (DS) display distinctive skeletal morphology compared to the general population, but disparate descriptions, methodologies, analyses, and populations sampled have led to diverging conclusions about this unique skeletal phenotype. As individuals with DS are living longer, they may be at a higher risk of aging disorders such as osteoporosis and increased fracture risk. Sexual dimorphism has been suggested between males and females with DS in which males, not females, experience an earlier decline in bone mineral density (BMD). Unfortunately, studies focusing on skeletal health related to Trisomy 21 (T21) are few in number and often too underpowered to answer questions about skeletal development, resultant osteoporosis, and sexual dimorphism, especially in stages of bone accrual. Further confounding the field are the varied methods of bone imaging, analysis, and data interpretation. This review takes a critical look at the current knowledge of DS skeletal phenotypes, both from human and mouse studies, and presents knowledge gaps that need to be addressed, differences in research methodologies and analyses that affect the interpretation of results, and proposes guidelines for overcoming obstacles to understand skeletal traits associated with DS. By examining our current knowledge of bone in individuals with T21, a trajectory for future studies may be established to provide meaningful solutions for understanding the development of and improving skeletal structures in individuals with and without DS.Item Suppression of sost/sclerostin and dikkopf-1 augment intervertebral disc structure in mice(Wiley, 2022) Kroon, Tori; Bhadouria, Neharika; Niziolek, Paul; Edwards, Daniel; Clinkenbeard, Erica L.; Robling, Alexander; Holguin, Nilsson; Biomedical Engineering, School of Engineering and TechnologyIntervertebral disc (IVD) degeneration is a leading cause of low back pain, characterized by accelerated extracellular matrix breakdown and IVD height loss but there is no approved pharmacological therapeutic. Deletion of Wnt ligand competitor Lrp5 induces IVD degeneration, suggesting that Wnt signaling is essential for IVD homeostasis. Therefore, the IVD may respond to neutralization of Wnt ligand competitors sost(gene)/sclerostin(protein) and/or dikkopf-1 (dkk1). Anti-sclerostin antibody (scl-Ab) is an FDA-approved bone therapeutic that activates Wnt signaling. We (1) determined if pharmacological neutralization of sclerostin, dkk1 or their combination would stimulate Wnt signaling and augment IVD structure and (2) determined the prolonged adaptation of the IVD to global, persistent deletion of sost. Nine-week-old C57Bl/6J female mice (n = 6-7/grp) were subcutaneously injected 2x/wk for 5.5 wk with scl-Ab (25 mg/kg), dkk1-Ab (25 mg/kg), 3:1 scl-Ab/dkk1-Ab (18.75:6.25 mg/kg) or vehicle (veh). Separately, IVD of sost KO and wildtype (WT) mice (n = 8/grp) were harvested at 16 weeks of age. First, compared to vehicle, injection of scl-Ab, dkk1-Ab and 3:1 scl-Ab/dkk1-Ab similarly increased lumbar IVD height and β-catenin gene expression. Despite these similarities, only injection of scl-Ab alone strengthened IVD mechanical properties and decreased heat shock protein gene expressions. Genetically and compared to WT, sost KO enlarged IVD height, increased proteoglycan staining and imbibed IVD hydration. Notably, persistent deletion of sost was compensated by upregulation of dkk1, which consequently reduced the cell nuclear fraction for Wnt signaling co-transcription factor β-catenin in the IVD. Lastly, RNA-sequencing pathway analysis confirmed the compensatory suppression of Wnt signaling and revealed a reduction of cellular stress-related pathways. Together, suppression of sost/sclerostin or dkk1 each augmented IVD structure by stimulating Wnt signaling, but scl-Ab outperformed dkk1-Ab in strengthening the IVD. Ultimately, postmenopausal women prescribed scl-Ab injections to prevent vertebral fracture may also benefit from a restoration of IVD height and health.