ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Gene Expression Data"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Identification of transcription factor and microRNA binding sites in responsible to fetal alcohol syndrome
    (BioMed Central, 2008-03-20) Wang, Guohua; Wang, Xin; Wang, Yadong; Yang, Jack Y.; Li, Lang; Nephew, Kenneth P.; Edenberg, Howard J.; Zhou, Feng C.; Liu, Yunlong; Medicine, School of Medicine
    This is a first report, using our MotifModeler informatics program, to simultaneously identify transcription factor (TF) and microRNA (miRNA) binding sites from gene expression microarray data. Based on the assumption that gene expression is controlled by combinatorial effects of transcription factors binding in the 5'-upstream regulatory region and miRNAs binding in the 3'-untranslated region (3'-UTR), we developed a model for (1) predicting the most influential cis-acting elements under a given biological condition, and (2) estimating the effects of those elements on gene expression levels. The regulatory regions, TF and miRNA, which mediate the differential genes expression in fetal alcohol syndrome were unknown; microarray data from alcohol exposure paradigm was used. The model predicted strong inhibitory effects of 5' cis-acting elements and stimulatory effects of 3'-UTR under alcohol treatment. Current predictive model derived a key hypothesis for the first time a novel role of miRNAs in gene expression changes associated with abnormal mouse embryo development after alcohol exposure. This suggests that disturbance of miRNA functions may contribute to the alcohol-induced developmental deficiencies.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University