- Browse by Subject
Browsing by Subject "Gene Expression Regulation"
Now showing 1 - 10 of 35
Results Per Page
Sort Options
Item 12-Lipoxygenase Promotes Obesity-Induced Oxidative Stress in Pancreatic Islets(American Society for Microbiology (ASM), 2014-10) Tersey, Sarah A.; Maier, Bernhard; Nishiki, Yurika; Maganti, Aarthi V.; Nadler, Jerry L.; Mirmira, Raghavendra G.; Department of Pediatrics, IU School of MedicineHigh-fat diets lead to obesity, inflammation, and dysglycemia. 12-Lipoxygenase (12-LO) is activated by high-fat diets and catalyzes the oxygenation of cellular arachidonic acid to form proinflammatory intermediates. We hypothesized that 12-LO in the pancreatic islet is sufficient to cause dysglycemia in the setting of high-fat feeding. To test this, we generated pancreas-specific 12-LO knockout mice and studied their metabolic and molecular adaptations to high-fat diets. Whereas knockout mice and control littermates displayed identical weight gain, body fat distribution, and macrophage infiltration into fat, knockout mice exhibited greater adaptive islet hyperplasia, improved insulin secretion, and complete protection from dysglycemia. At the molecular level, 12-LO deletion resulted in increases in islet antioxidant enzymes Sod1 and Gpx1 in response to high-fat feeding. The absence or inhibition of 12-LO led to increases in nuclear Nrf2, a transcription factor responsible for activation of genes encoding antioxidant enzymes. Our data reveal a novel pathway in which islet 12-LO suppresses antioxidant enzymes and prevents the adaptive islet responses in the setting of high-fat diets.Item Amyloid-β precursor protein synthesis inhibitors for Alzheimer's disease treatment(Wiley, 2014-10) Greig, Nigel H.; Sambamurti, Kumar; Lahiri, Debomoy K.; Becker, Robert E.; Department of Psychiatry, IU School of MedicineItem Androgen regulation of pulmonary AR, TMPRSS2 and ACE2 with implications for sex-discordant COVID-19 outcomes(Nature, 2021-05-27) Baratchian, Mehdi; McManus, Jeffrey M.; Berk, Mike P.; Nakamura, Fumihiko; Mukhopadhyay, Sanjay; Xu, Weiling; Erzurum, Serpil; Drazba, Judy; Peterson, John; Klein, Eric A.; Gaston, Benjamin; Sharifi, Nima; Pediatrics, School of MedicineThe sex discordance in COVID-19 outcomes has been widely recognized, with males generally faring worse than females and a potential link to sex steroids. A plausible mechanism is androgen-induced expression of TMPRSS2 and/or ACE2 in pulmonary tissues that may increase susceptibility or severity in males. This hypothesis is the subject of several clinical trials of anti-androgen therapies around the world. Here, we investigated the sex-associated TMPRSS2 and ACE2 expression in human and mouse lungs and interrogated the possibility of pharmacologic modification of their expression with anti-androgens. We found no evidence for increased TMPRSS2 expression in the lungs of males compared to females in humans or mice. Furthermore, in male mice, treatment with the androgen receptor antagonist enzalutamide did not decrease pulmonary TMPRSS2. On the other hand, ACE2 and AR expression was sexually dimorphic and higher in males than females. ACE2 was moderately suppressible with enzalutamide administration. Our work suggests that sex differences in COVID-19 outcomes attributable to viral entry are independent of TMPRSS2. Modest changes in ACE2 could account for some of the sex discordance.Item BATF-Interacting Proteins Dictate Specificity in Th Subset Activity(American Association of Immunologists, 2020-10-01) Fu, Yongyao; Koh, Byunghee; Kuwahara, Makoto; Ulrich, Benjamin J.; Kharwadkar, Rakshin; Yamashita, Masakatsu; Kaplan, Mark H.; Microbiology and Immunology, School of MedicineThe basic leucine zipper (bZIP) transcription factor BATF is expressed in multiple Th subsets and cooperates with other factors to regulate gene transcription. BATF activates lineage-specific cytokines in Th subsets, activating IL-9 in Th9 cells and IL-17 in Th17 cells, but not IL-9 or IL-17 in the reciprocal subset. The mechanism for this restricted activity is unclear. In this report we define BATF binding partners that contribute to Th subset-specific functions. Although BATF and IRF4 are expressed in greater amounts in Th9 than Th17, increased expression of both factors is not sufficient to induce IL-9 in Th17 cells. BATF also requires heterodimer formation with Jun family members to bind DNA and induce gene expression. Using primary mouse T cell culture, we observed that JunB and c-Jun, but not JunD, promote IL-9 production in Th9 cells. Ectopic expression of BATF with either JunB or c-Jun generates modest but significant increases in IL-9 production in Th17 cells, suggesting that the low expression of Jun family members is one factor limiting the ability of BATF to induce IL-9 in Th17 cells. We further identified that Bach2 positively regulates IL-9 production by directly binding to the Il9 gene and by increasing transcription factor expression in Th9 cells. Strikingly, co-transduction of Bach2 and BATF significantly induces IL-9 production in both Th9 and Th17 cells. Taken together, our results reveal that JunB, c-Jun and Bach2 cooperate with BATF toItem Changes in Gene Expression within the Extended Amygdala following Binge-Like Alcohol Drinking by Adolescent Alcohol-Preferring (P) Rats(Elsevier, 2014-02) McBride, William J.; Kimpel, Mark W.; McClintick, Jeanette N.; Ding, Zheng-Ming; Edenberg, Howard J.; Liang, Tiebing; Rodd, Zachary A.; Bell, Richard L.; Department of Psychiatry, IU School of MedicineThe objective of this study was to determine changes in gene expression within the extended amygdala following binge-like alcohol drinking by male adolescent alcohol-preferring (P) rats. Starting at 28 days of age, P rats were given concurrent access to 15 and 30 % ethanol for 3 one-h sessions/day for 5 consecutive days/week for 3 weeks. Rats were killed by decapitation 3 h after the first ethanol access session on the 15th day of drinking. RNA was prepared from micropunch samples of the nucleus accumbens shell (Acb-sh) and central nucleus of the amygdala (CeA). Ethanol intakes were 2.5 – 3.0 g/kg/session. There were 154 and 182 unique named genes that significantly differed (FDR = 0.2) between the water and ethanol group in the Acb-sh and CeA, respectively. Gene Ontology (GO) analyses indicated that adolescent binge drinking produced changes in biological processes involved with cell proliferation and regulation of cellular structure in the Acb-sh, and in neuron projection and positive regulation of cellular organization in the CeA. Ingenuity Pathway Analysis indicated that, in the Acb-sh, there were several major intracellular signaling pathways (e.g., cAMP-mediated and protein kinase A signaling pathways) altered by adolescent drinking, with 3-fold more genes up-regulated than down-regulated in the alcohol group. The cAMP-mediated signaling system was also up-regulated in the CeA of the alcohol group. Weighted gene co-expression network analysis indicated significant G-protein coupled receptor signaling and transmembrane receptor protein kinase signaling categories in the Acb-sh and CeA, respectively. Overall, the results of this study indicated that binge-like alcohol drinking by adolescent P rats is differentially altering the expression of genes in the Acb-sh and CeA, some of which are involved in intracellular signaling pathways and may produce changes in neuronal function.Item A conserved enhancer regulates Il9 expression in multiple lineages(Nature Research, 2018-11-15) Koh, Byunghee; Qayum, Amina Abdul; Srivastava, Rajneesh; Fu, Yongyao; Ulrich, Benjamin J.; Janga, Sarath Chandra; Kaplan, Mark H.; Pediatrics, School of MedicineCytokine genes are regulated by multiple regulatory elements that confer tissue-specific and activation-dependent expression. The cis-regulatory elements of the gene encoding IL-9, a cytokine that promotes allergy, autoimmune inflammation and tumor immunity, have not been defined. Here we identify an enhancer (CNS-25) upstream of the Il9 gene that binds most transcription factors (TFs) that promote Il9 gene expression. Deletion of the enhancer in the mouse germline alters transcription factor binding to the remaining Il9 regulatory elements, and results in diminished IL-9 production in multiple cell types including Th9 cells, and attenuates IL-9-dependent immune responses. Moreover, deletion of the homologous enhancer (CNS-18) in primary human Th9 cultures results in significant decrease of IL-9 production. Thus, Il9 CNS-25/IL9 CNS-18 is a critical and conserved regulatory element for IL-9 production.Item Consumption of Diet Soda Sweetened with Sucralose and Acesulfame‐Potassium Alters Inflammatory Transcriptome Pathways in Females with Overweight and Obesity(Wiley, 2020-06) Sylvetsky, Allison C.; Sen, Sabyasachi; Merkel, Patrick; Dore, Fiona; Stern, David B.; Henry, Curtis J.; Cai, Hongyi; Walter, Peter J.; Crandall, Keith A.; Rother, Kristina I.; Hubal, Monica J.; Kinesiology, School of Health and Human SciencesSCOPE: Low-calorie sweetener (LCS) consumption is associated with metabolic disease in observational studies. However, physiologic mechanisms underlying LCS-induced metabolic impairments in humans are unclear. This study is aimed at identifying molecular pathways in adipose impacted by LCSs. METHODS AND RESULTS: Seven females with overweight or obesity, who did not report LCS use, consumed 12 ounces of diet soda containing sucralose and acesulfame-potassium (Ace-K) three times daily for 8 weeks. A subcutaneous adipose biopsy from the left abdomen and a fasting blood sample were collected at baseline and post-intervention. Global gene expression were assessed using RNA-sequencing followed by functional pathway analysis. No differences in circulating metabolic or inflammatory biomarkers were observed. However, ANOVA detected 828 differentially expressed annotated genes after diet soda consumption (p < 0.05), including transcripts for inflammatory cytokines. Fifty-eight of 140 canonical pathways represented in pathway analyses regulated inflammation, and several key upstream regulators of inflammation (e.g., TNF-alpha) were also represented. CONCLUSION: Consumption of diet soda with sucralose and Ace-K alters inflammatory transcriptomic pathways (e.g., NF-κB signaling) in subcutaneous adipose tissue but does not significantly alter circulating biomarkers. Findings highlight the need to examine molecular and metabolic effects of LCS exposure in a larger randomized control trial for a longer duration.Item Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors(Wiley, 1999-01) March, K.L.; Woody, M.; Mehdi, K.; Zipes, D.P.; Brantly, M.; Trapnell, B.C.; Medicine, School of MedicineAdenoviral vectors are promising agents for a number of in vivo gene therapy applications including diseases of the heart and coronary vessels. Efficient intravascular gene transfer to specific sites has been achieved in occluded vessels, but otherwise is hampered by the effect of blood flow on localized vector uptake in the vessel wall. An alternative delivery approach to coronary arteries is the expression of diffusible gene products into the pericardial space surrounding the heart and coronary arteries. However, in vivo pericardial access is comparatively difficult and has been limited to surgical approaches. We hypothesized that efficient adenovirus-mediated gene expression in pericardial lining mesothelium could be achieved by transmyocardial vector delivery to the pericardium. To evaluate this concept, a hollow, helical-tipped penetrating catheter was used to deliver vector-containing fluid directly into the intrapericardial space. The catheter was introduced percutaneously in anesthetized mongrel dogs, advanced into the right ventricle, and the tip passed through the apical right ventricular myocardium under direct radiographic visualization until the open end of the catheter tip resided in the intrapericardial space. Adenoviral vectors expressing either nuclear-localizing beta-galactosidase, cytoplasmic luciferase, or secreted human alpha 1AT reporters (Av1nBg, Av1Lu, or Av1Aa, respectively) were instilled through the catheter into the intrapericardial space. Three days later the animals were sacrificed and reporter gene expression was evaluated in pericardium, epicardium, and multiple other tissues. In animals receiving Av1nBg, beta-galactosidase activity was evident in most of the pericardial lining endothelium, up to 100% in many areas. In animals receiving Av1Lu, luciferase reporter activity was abundant in pericardial tissues, but near-background levels were observed in other organs. In animals receiving Av1Aa, human alpha 1AT was abundant (16-29 mg/ml) in pericardial fluid, but was undetectable in serum. All animals tolerated the procedure well with no electrocardiographic changes and no clinical sequelae. These observations demonstrate highly efficient adenovirus vector delivery and gene transfer and expression in the pericardium and support the feasibility of localized gene therapy via catheter-based pericardial approaches. We suggest that the pericardial sac may serve as a sustained-release protein delivery system for the generation of desired gene products or their metabolites for diffusion into the epicardial region.Item FKBP51 controls cellular adipogenesis through p38 kinase-mediated phosphorylation of GRα and PPARγ(The Endocrine Society, 2014-08) Stechschulte, Lance A.; Hinds Jr., Terry D.; Khuder, Saja S.; Shou, Weinian; Najjar, Sonia M.; Sanchez, Edwin R.; Department of Pediatrics, IU School of MedicineGlucocorticoid receptor-α (GRα) and peroxisome proliferator-activated receptor-γ (PPARγ) are critical regulators of adipogenic responses. We have shown that FK506-binding protein 51 (FKBP51) represses the Akt-p38 kinase pathway to reciprocally inhibit GRα but stimulate PPARγ by targeting serine 112 (PPARγ) and serines 220 and 234 (GRα). Here, this mechanism is shown to be essential for GRα and PPARγ control of cellular adipogenesis. In 3T3-L1 cells, FKBP51 was a prominent marker of the differentiated state and knockdown of FKBP51 showed reduced lipid accumulation and expression of adipogenic genes. Compared with wild-type (WT), FKBP51 knockout (51KO) mouse embryonic fibroblasts (MEFs) showed dramatic resistance to differentiation, with almost no lipid accumulation and greatly reduced adipogenic gene expression. These features were rescued by reexpression of FKBP51 in 51KO cells. 51KO MEFs exhibited reduced fatty acid synthase activity, increased sensitivity to GRα-induced lipolysis, and reduced PPARγ activity at adipogenic genes (adiponectin, CD36, and perilipin) but elevated GRα transrepression at these same genes. A p38 kinase inhibitor increased lipid content in WT cells and also restored lipid levels in 51KO cells, showing that elevated p38 kinase activity is a major contributor to adipogenic resistance in the 51KO cells. In 51KO cells, the S112A mutant of PPARγ and the triple S212A/S220A/S234A mutant of GRα both increased lipid accumulation, identifying these residues as targets of the FKBP51/p38 axis. Our combined investigations have uncovered FKBP51 as a key regulator of adipogenesis via the Akt-p38 pathway and as a potential target in the treatment of obesity and related disorders.Item GCN2-like eIF2α kinase manages the amino acid starvation response in Toxoplasma gondii(Elsevier, 2014-02) Konrad, Christian; Wek, Ronald C.; Sullivan, William J., Jr.; Department of Pharmacology and Toxicology, IU School of MedicineThe apicomplexan protozoan Toxoplasma gondii is a significant human and veterinary pathogen. As an obligate intracellular parasite, Toxoplasma depends on nutrients provided by the host cell and needs to adapt to limitations in available resources. In mammalian cells, translational regulation via GCN2 phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) is a key mechanism for adapting to nutrient stress. Toxoplasma encodes two GCN2-like protein kinases, TgIF2K-C and TgIF2K-D. We previously showed that TgIF2K-D phosphorylates T. gondii eIF2α (TgIF2α) upon egress from the host cell, which enables the parasite to overcome exposure to the extracellular environment. However, the function of TgIF2K-C remained unresolved. To determine the functions of TgIF2K-C in the parasite, we cloned the cDNA encoding TgIF2K-C and generated knockout parasites of this TgIF2α kinase to study its function during the lytic cycle. The TgIF2K-C knockout did not exhibit a fitness defect compared with parental parasites. However, upon infection of human fibroblasts that were subsequently cultured in glutamine-free medium, the intracellular TgIF2K-C knockout parasites were impeded for induced phosphorylation of TgIF2α and showed a 50% reduction in the number of plaques formed compared with parental parasites. Furthermore, we found that this growth defect in glutamine-free media was phenocopied in parasites expressing only a non-phosphorylatable TgIF2α (TgIF2α-S71A), but not in a TgIF2K-D knockout. These studies suggest that Toxoplasma GCN2-like kinases TgIF2K-C and TgIF2K-D evolved to have distinct roles in adapting to changes in the parasite’s environment.