- Browse by Subject
Browsing by Subject "Gemcitabine"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item A phase I study of the anaplastic lymphoma kinase inhibitor ceritinib in combination with gemcitabine-based chemotherapy in patients with advanced solid tumors(Wiley, 2021) Fountzilas, Christos; Adjei, Alex; Opyrchal, Mateusz; Evans, Rachel; Ghasemi, Mohammad; Attwood, Kristopher; Groman, Adrienne; Bshara, Wiam; Goey, Andrew; Wilton, John; Ma, Wen Wee; Iyer, Renuka; Medicine, School of MedicineIn this phase I, dose-escalation study, we sought to determine the maximum tolerated dose (MTD) of the anaplastic lymphoma kinase/c-ROS oncogene 1 receptor (ALK/ROS1) inhibitor ceritinib in combination with gemcitabine-based chemotherapy in patients with advanced solid tumors. Secondary objectives were characterization of the safety profile, pharmacokinetics and preliminary efficacy of these combinations, and identification of potential biomarkers of efficacy. Ceritinib was combined with gemcitabine (Arm 1), gemcitabine/nab-paclitaxel (Arm 2) or gemcitabine/cisplatin (Arm 3). Drug concentrations in plasma were measured by tandem mass spectrometric detection (LC-MS/MS). We analyzed archival tumor tissue for ALK, ROS1, hepatocyte growth factor receptor (c-MET) and c-Jun N-terminal kinase (JNK) expression by immunohistochemistry. Arm 2 closed early secondary to toxicity. Twenty-one patients were evaluable for dose-limiting toxicity (DLT). There was one DLT in Arm 1 (grade 3 ALT increase) and three DLTs in Arm 3 (grade 3 acute renal failure, grade 3 thrombocytopenia, grade 3 dyspnea). The MTD of ceritinib was determined to be 600 mg (Arm 1) and 450 mg orally daily (Arm 3). Main toxicities were hematologic, constitutional and gastrointestinal as expected by the chemotherapy backbone. The apparent clearance for ceritinib decreased substantially after repeated dosing; cisplatin did not significantly affect the pharmacokinetics of ceritinib. The overall response rate was 20%; the median progression-free survival was 4.8 months. Three out of five response-evaluable cholangiocarcinoma patients had clinical benefit. Increased expression of c-MET was associated with a lack of clinical benefit. Ceritinib in combination with gemcitabine and gemcitabine/cisplatin has a manageable toxicity profile. Further development of this strategy in tumors with ALK or ROS1 fusions is warranted.Item Development of Liposomal Gemcitabine with High Drug Loading Capacity(ACS Publications, 2019-05-28) Tamam, Hassan; Park, Jinho; Gadalla, Hytham H.; Masters, Andrea R.; Abdel-Aleem, Jelan A.; Abdelrahman, Sayed I.; Abdelrahman, Aly A.; Lyle, L. Tiffany; Yeo, Yoon; Medicine, School of MedicineLiposomes are widely used for systemic delivery of chemotherapeutic agents to reduce their nonspecific side effects. Gemcitabine (Gem) makes a great candidate for liposomal encapsulation due to the short half-life and nonspecific side effects; however, it has been difficult to achieve liposomal Gem with high drug loading capacity. Remote loading, which uses a transmembrane pH gradient to induce an influx of drug and locks the drug in the core as a sulfate complex, does not serve Gem as efficiently as doxorubicin (Dox) due to the low pKa value of Gem. Existing studies have attempted to improve Gem loading capacity in liposomes by employing lipophilic Gem derivatives or creating a high-concentration gradient for active loading into the hydrophilic cores (small volume loading). In this study, we combine the remote loading approach and small volume loading or hypertonic loading, a new approach to induce the influx of Gem into the preformed liposomes by high osmotic pressure, to achieve a Gem loading capacity of 9.4–10.3 wt % in contrast to 0.14–3.8 wt % of the conventional methods. Liposomal Gem showed a good stability during storage, sustained-release over 120 h in vitro, enhanced cellular uptake, and improved cytotoxicity as compared to free Gem. Liposomal Gem showed a synergistic effect with liposomal Dox on Huh7 hepatocellular carcinoma cells. A mixture of liposomal Gem and liposomal Dox delivered both drugs to the tumor more efficiently than a free drug mixture and showed a relatively good anti-tumor effect in a xenograft model of hepatocellular carcinoma. This study shows that bioactive liposomal Gem with high drug loading capacity can be produced by remote loading combined with additional approaches to increase drug influx into the liposomes.Item Dimethylaminoparthenolide and gemcitabine: a survival study using a genetically engineered mouse model of pancreatic cancer(Springer Nature, 2013-04-17) Yip-Schneider, Michele T.; Wu, Huangbing; Stantz, Keith; Agaram, Narasimhan; Crooks, Peter A.; Schmidt, C. Max; Surgery, School of MedicineBackground: Pancreatic cancer remains one of the deadliest cancers due to lack of early detection and absence of effective treatments. Gemcitabine, the current standard-of-care chemotherapy for pancreatic cancer, has limited clinical benefit. Treatment of pancreatic cancer cells with gemcitabine has been shown to induce the activity of the transcription factor nuclear factor-kappaB (NF-κB) which regulates the expression of genes involved in the inflammatory response and tumorigenesis. It has therefore been proposed that gemcitabine-induced NF-κB activation may result in chemoresistance. We hypothesize that NF-κB suppression by the novel inhibitor dimethylaminoparthenolide (DMAPT) may enhance the effect of gemcitabine in pancreatic cancer. Methods: The efficacy of DMAPT and gemcitabine was evaluated in a chemoprevention trial using the mutant Kras and p53-expressing LSL-KrasG12D/+; LSL-Trp53R172H; Pdx-1-Cre mouse model of pancreatic cancer. Mice were randomized to treatment groups (placebo, DMAPT [40 mg/kg/day], gemcitabine [50 mg/kg twice weekly], and the combination DMAPT/gemcitabine). Treatment was continued until mice showed signs of ill health at which time they were sacrificed. Plasma cytokine levels were determined using a Bio-Plex immunoassay. Statistical tests used included log-rank test, ANOVA with Dunnett's post-test, Student's t-test, and Fisher exact test. Results: Gemcitabine or the combination DMAPT/gemcitabine significantly increased median survival and decreased the incidence and multiplicity of pancreatic adenocarcinomas. The DMAPT/gemcitabine combination also significantly decreased tumor size and the incidence of metastasis to the liver. No significant differences in the percentages of normal pancreatic ducts or premalignant pancreatic lesions were observed between the treatment groups. Pancreata in which no tumors formed were analyzed to determine the extent of pre-neoplasia; mostly normal ducts or low grade pancreatic lesions were observed, suggesting prevention of higher grade lesions in these animals. While gemcitabine treatment increased the levels of the inflammatory cytokines interleukin 1α (IL-1α), IL-1β, and IL-17 in mouse plasma, DMAPT and DMAPT/gemcitabine reduced the levels of the inflammatory cytokines IL-12p40, monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1 beta (MIP-1β), eotaxin, and tumor necrosis factor-alpha (TNF-α), all of which are NF-κB target genes. Conclusion: In summary, these findings provide preclinical evidence supporting further evaluation of agents such as DMAPT and gemcitabine for the prevention and treatment of pancreatic cancer.Item DUSP1 Is a Novel Target for Enhancing Pancreatic Cancer Cell Sensitivity to Gemcitabine(Public Library of Science, 2014-01-07) Liu, Fang; Gore, A. Jesse; Wilson, Julie L.; Korc, Murray; Medicine, School of MedicinePancreatic ductal adenocarcinoma (PDAC) is a deadly cancer with a poor prognosis that is characterized by excessive mitogenic pathway activation and marked chemoresistance to a broad spectrum of chemotherapeutic drugs. Dual specificity protein phosphatase 1 (DUSP1) is a key negative regulator of mitogen activated protein kinases (MAPKs). Yet, DUSP1 is overexpressed in pancreatic cancer cells (PCCs) in PDAC where it paradoxically enhances colony formation in soft agar and promotes in vivo tumorigenicity. However, it is not known whether DUSP1 overexpression contributes to PDAC chemoresistance. Using BxPC3 and COLO-357 human PCCs, we show that gemcitabine activates c-JUN N-terminal kinase (JNK) and p38 mitogen activated protein kinase (p38 MAPK), key kinases in two major stress-activated signaling pathways. Gemcitabine-induced JNK and p38 MAPK activation mediates increased apoptosis, but also transcriptionally upregulates DUSP1, as evidenced by increased DUSP1 mRNA levels and RNA polymerase II loading at DUSP1 gene body. Conversely, shRNA-mediated inhibition of DUSP1 enhances JNK and p38 MAPK activation and gemcitabine chemosensitivity. Using doxycycline-inducible knockdown of DUSP1 in established orthotopic pancreatic tumors, we found that combining gemcitabine with DUSP1 inhibition improves animal survival, attenuates angiogenesis, and enhances apoptotic cell death, as compared with gemcitabine alone. Taken together, these results suggest that gemcitabine-mediated upregulation of DUSP1 contributes to a negative feedback loop that attenuates its beneficial actions on stress pathways and apoptosis, raising the possibility that targeting DUSP1 in PDAC may have the advantage of enhancing gemcitabine chemosensitivity while suppressing angiogenesis.Item Effect of Adenomatous Polyposis Coli Loss on Tumorigenic Potential in Pancreatic Ductal Adenocarcinoma(MDPI, 2019-09-14) Cole, Jennifer M.; Simmons, Kaitlyn; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of MedicineLoss of the Adenomatous Polyposis Coli (APC) tumor suppressor in colorectal cancer elicits rapid signaling through the Wnt/β-catenin signaling pathway. In contrast to this well-established role of APC, recent studies from our laboratory demonstrated that APC functions through Wnt-independent pathways to mediate in vitro and in vivo models of breast tumorigenesis. Pancreatic ductal adenocarcinoma (PDAC) has an overall median survival of less than one year with a 5-year survival rate of 7.2%. APC is lost in a subset of pancreatic cancers, but the impact on Wnt signaling or tumor development is unclear. Given the lack of effective treatment strategies for pancreatic cancer, it is important to understand the functional implications of APC loss in pancreatic cancer cell lines. Therefore, the goal of this project is to study how APC loss affects Wnt pathway activation and in vitro tumor phenotypes. Using lentiviral shRNA, we successfully knocked down APC expression in six pancreatic cancer cell lines (AsPC-1, BxPC3, L3.6pl, HPAF-II, Hs 766T, MIA PaCa-2). No changes were observed in localization of β-catenin or reporter assays to assess β-catenin/TCF interaction. Despite this lack of Wnt/β-catenin pathway activation, the majority of APC knockdown cell lines exhibit an increase in cell proliferation. Cell migration assays showed that the BxPC-3 and L3.6pl cells were impacted by APC knockdown, showing faster wound healing in scratch wound assays. Interestingly, APC knockdown had no effect on gemcitabine treatment, which is the standard care for pancreatic cancer. It is important to understand the functional implications of APC loss in pancreatic cancer cells lines, which could be used as a target for therapeutics.Item Novel role of miR-29a in pancreatic cancer autophagy and its therapeutic potential(Impact Journals, 2016-11-01) Kwon, Jason J.; Willy, Jeffrey A.; Quirin, Kayla A.; Wek, Ronald C.; Korc, Murray; Yin, Xiao-Ming; Kota, Janaiah; Department of Medical & Molecular Genetics, IU School of MedicinePancreatic Ductal Adenocarcinoma (PDAC) is a highly lethal malignancy that responds poorly to current therapeutic modalities. In an effort to develop novel therapeutic strategies, we found downregulation of miR-29 in pancreatic cancer cells, and overexpression of miR-29a sensitized chemotherapeutic resistant pancreatic cancer cells to gemcitabine, reduced cancer cell viability, and increased cytotoxicity. Furthermore, miR-29a blocked autophagy flux, as evidenced by an accumulation of autophagosomes and autophagy markers, LC3B and p62, and a decrease in autophagosome-lysosome fusion. In addition, miR-29a decreased the expression of autophagy proteins, TFEB and ATG9A, which are critical for lysosomal function and autophagosome trafficking respectively. Knockdown of TFEB or ATG9A inhibited autophagy similar to miR-29a overexpression. Finally, miR-29a reduced cancer cell migration, invasion, and anchorage independent growth. Collectively, our findings indicate that miR-29a functions as a potent autophagy inhibitor, sensitizes cancer cells to gemcitabine, and decreases their invasive potential. Our data provides evidence for the use of miR-29a as a novel therapeutic agent to target PDAC.Item PRMT1 promotes pancreatic cancer development and resistance to chemotherapy(Elsevier, 2024) Ku, Bomin; Eisenbarth, David; Baek, Seonguk; Jeong, Tae-Keun; Kang, Ju-Gyeong; Hwang, Daehee; Noh, Myung-Giun; Choi, Chan; Choi, Sungwoo; Seol, Taejun; Kim, Yun-Hee; Woo, Sang Myung; Kong, Sun-Young; Lim, Dae-Sik; Medicine, School of MedicinePancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal types of cancer, and novel treatment regimens are direly needed. Epigenetic regulation contributes to the development of various cancer types, but its role in the development of and potential as a therapeutic target for PDAC remains underexplored. Here, we show that PRMT1 is highly expressed in murine and human pancreatic cancer and is essential for cancer cell proliferation and tumorigenesis. Deletion of PRMT1 delays pancreatic cancer development in a KRAS-dependent mouse model, and multi-omics analyses reveal that PRMT1 depletion leads to global changes in chromatin accessibility and transcription, resulting in reduced glycolysis and a decrease in tumorigenic capacity. Pharmacological inhibition of PRMT1 in combination with gemcitabine has a synergistic effect on pancreatic tumor growth in vitro and in vivo. Collectively, our findings implicate PRMT1 as a key regulator of pancreatic cancer development and a promising target for combination therapy.Item The role of GLI-SOX2 signaling axis for gemcitabine resistance in pancreatic cancer(Springer Nature, 2019-03) Jia, Yanfei; Gu, Dongsheng; Wan, Jun; Yu, Beiqin; Zhang, Xiaoli; Chiorean, E. Gabriela; Wang, Yunshan; Xie, Jingwu; Pediatrics, School of MedicinePancreatic cancer, mostly pancreatic ductal adenocarcinomas (PDAC), is one of the most lethal cancers, with a dismal median survival around 8 months. PDAC is notoriously resistant to chemotherapy. Thus far, numerous attempts using novel targeted therapies and immunotherapies yielded limited clinical benefits for pancreatic cancer patients. It is hoped that delineating the molecular mechanisms underlying drug resistance in pancreatic cancer may provide novel therapeutic options. Using acquired gemcitabine resistant pancreatic cell lines, we revealed an important role of the GLI-SOX2 signaling axis for regulation of gemcitabine sensitivity in vitro and in animal models. Down-regulation of GLI transcriptional factors (GLI1 or GLI2), but not SMO signaling inhibition, reduces tumor sphere formation, a characteristics of tumor initiating cell (TIC). Down-regulation of GLI transcription factors also decreased expression of TIC marker CD24. Similarly, high SOX2 expression is associated with gemcitabine resistance whereas down-regulation of SOX2 sensitizes pancreatic cancer cells to gemcitabine treatment. We further revealed that elevated SOX2 expression is associated with an increase in GLI1 or GLI2 expression. Our ChIP assay revealed that GLI proteins are associated with a putative Gli binding site within the SOX2 promoter, suggesting a more direct regulation of SOX2 by GLI transcription factors. The relevance of our findings to human disease was revealed in human cancer specimens. We found that high SOX2 protein expression is associated with frequent tumor relapse and poor survival in stage II PDAC patients (all of them underwent gemcitabine treatment), indicating that reduced SOX2 expression or down-regulation of GLI transcription factors may be effective in sensitizing pancreatic cancer cells to gemcitabine treatment.Item Telotristat ethyl, a tryptophan hydroxylase inhibitor, enhances antitumor efficacy of standard chemotherapy in preclinical cholangiocarcinoma models(Wiley, 2024) Awasthi, Niranjan; Darman, Lily; Schwarz, Margaret A.; Schwarz, Roderich E.; Surgery, School of MedicineCholangiocarcinoma (CCA), an aggressive biliary tract cancer, carries a grim prognosis with a 5-year survival rate of 5%-15%. Standard chemotherapy regimens for CCA, gemcitabine plus cisplatin (GemCis) or its recently approved combination with durvalumab demonstrate dismal clinical activity, yielding a median survival of 12-14 months. Increased serotonin accumulation and secretion have been implicated in the oncogenic activity of CCA. This study investigated the therapeutic efficacy of telotristat ethyl (TE), a tryptophan hydroxylase inhibitor blocking serotonin biosynthesis, in combination with standard chemotherapies in preclinical CCA models. Nab-paclitaxel (NPT) significantly enhanced animal survival (60%), surpassing the marginal effects of TE (11%) or GemCis (9%) in peritoneal dissemination xenografts. Combining TE with GemCis (26%) or NPT (68%) further increased survival rates. In intrahepatic (iCCA), distal (dCCA) and perihilar (pCCA) subcutaneous xenografts, TE exhibited substantial tumour growth inhibition (41%-53%) compared to NPT (56%-69%) or GemCis (37%-58%). The combination of TE with chemotherapy demonstrated enhanced tumour growth inhibition in all three cell-derived xenografts (67%-90%). PDX studies revealed TE's marked inhibition of tumour growth (40%-73%) compared to GemCis (80%-86%) or NPT (57%-76%). Again, combining TE with chemotherapy exhibited an additive effect. Tumour cell proliferation reduction aligned with tumour growth inhibition in all CDX and PDX tumours. Furthermore, TE treatment consistently decreased serotonin levels in all tumours under all therapeutic conditions. This investigation decisively demonstrated the antitumor efficacy of TE across a spectrum of CCA preclinical models, suggesting that combination therapies involving TE, particularly for patients exhibiting serotonin overexpression, hold the promise of improving clinical CCA therapy.Item Therapeutic efficacy of anti-MMP9 antibody in combination with nab-paclitaxel-based chemotherapy in pre-clinical models of pancreatic cancer(Wiley, 2019-06) Awasthi, Niranjan; Mikels‐Vigdal, Amanda J.; Stefanutti, Erin; Schwarz, Margaret A.; Monahan, Sheena; Smith, Victoria; Schwarz, Roderich E.; Surgery, School of MedicineMatrix metalloproteinase 9 (MMP9) is involved in the proteolysis of extracellular proteins and plays a critical role in pancreatic ductal adenocarcinoma (PDAC) progression, invasion and metastasis. The therapeutic potential of an anti-MMP9 antibody (αMMP9) was evaluated in combination with nab-paclitaxel (NPT)-based standard cytotoxic therapy in pre-clinical models of PDAC. Tumour progression and survival studies were performed in NOD/SCID mice. The mechanistic evaluation involved RNA-Seq, Luminex, IHC and Immunoblot analyses of tumour samples. Median animal survival compared to controls was significantly increased after 2-week therapy with NPT (59%), Gem (29%) and NPT+Gem (76%). Addition of αMMP9 antibody exhibited further extension in survival: NPT+αMMP9 (76%), Gem+αMMP9 (47%) and NPT+Gem+αMMP9 (94%). Six-week maintenance therapy revealed that median animal survival was significantly increased after NPT+Gem (186%) and further improved by the addition of αMMP9 antibody (218%). Qualitative assessment of mice exhibited that αMMP9 therapy led to a reduction in jaundice, bloody ascites and metastatic burden. Anti-MMP9 antibody increased the levels of tumour-associated IL-28 (1.5-fold) and decreased stromal markers (collagen I, αSMA) and the EMT marker vimentin. Subcutaneous tumours revealed low but detectable levels of MMP9 in all therapy groups but no difference in MMP9 expression. Anti-MMP9 antibody monotherapy resulted in more gene expression changes in the mouse stroma compared to the human tumour compartment. These findings suggest that anti-MMP9 antibody can exert specific stroma-directed effects that could be exploited in combination with currently used cytotoxics to improve clinical PDAC therapy.