ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Gastrulation"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Ethanol Effects on Early Developmental Stages Studied Using the Zebrafish
    (MDPI, 2022-10-13) Manikandan, Priyadharshini; Sarmah, Swapnalee; Marrs, James A.; Biology, School of Science
    Fetal alcohol spectrum disorder (FASD) results from prenatal ethanol exposure. The zebrafish (Danio rerio) is an outstanding in vivo FASD model. Early development produced the three germ layers and embryonic axes patterning. A critical pluripotency transcriptional gene circuit of sox2, pou5f1 (oct4; recently renamed pou5f3), and nanog maintain potency and self-renewal. Ethanol affects sox2 expression, which functions with pou5f1 to control target gene transcription. Various genes, like elf3, may interact and regulate sox2, and elf3 knockdown affects early development. Downstream of the pluripotency transcriptional circuit, developmental signaling activities regulate morphogenetic cell movements and lineage specification. These activities are also affected by ethanol exposure. Hedgehog signaling is a critical developmental signaling pathway that controls numerous developmental events, including neural axis specification. Sonic hedgehog activities are affected by embryonic ethanol exposure. Activation of sonic hedgehog expression is controlled by TGF-ß family members, Nodal and Bmp, during dorsoventral (DV) embryonic axis establishment. Ethanol may perturb TGF-ß family receptors and signaling activities, including the sonic hedgehog pathway. Significantly, experiments show that activation of sonic hedgehog signaling rescues some embryonic ethanol exposure effects. More research is needed to understand how ethanol affects early developmental signaling and morphogenesis.
  • Loading...
    Thumbnail Image
    Item
    Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects
    (The Company of Biologists, 2013-08-14) Sarmah, Swapnalee; Muralidharan, Pooja; Curtis, Courtney L.; McClintick, Jeanette N.; Buente, Bryce B.; Holdgrafer, David J.; Ogbeifun, Osato; Olorungbounmi, Opeyemi C.; Patino, Liliana; Lucas, Ryan; Gilbert, Sonya; Groninger, Evan S.; Arciero, Julia; Edenberg, Howard J.; Marrs, James A.; Biology, School of Science
    Fetal alcohol spectrum disorder (FASD) occurs when pregnant mothers consume alcohol, causing embryonic ethanol exposure and characteristic birth defects that include craniofacial, neural and cardiac defects. Gastrulation is a particularly sensitive developmental stage for teratogen exposure, and zebrafish is an outstanding model to study gastrulation and FASD. Epiboly (spreading blastomere cells over the yolk cell), prechordal plate migration and convergence/extension cell movements are sensitive to early ethanol exposure. Here, experiments are presented that characterize mechanisms of ethanol toxicity on epiboly and gastrulation. Epiboly mechanisms include blastomere radial intercalation cell movements and yolk cell microtubule cytoskeleton pulling the embryo to the vegetal pole. Both of these processes were disrupted by ethanol exposure. Ethanol effects on cell migration also indicated that cell adhesion was affected, which was confirmed by cell aggregation assays. E-cadherin cell adhesion molecule expression was not affected by ethanol exposure, but E-cadherin distribution, which controls epiboly and gastrulation, was changed. E-cadherin was redistributed into cytoplasmic aggregates in blastomeres and dramatically redistributed in the extraembryonic yolk cell. Gene expression microarray analysis was used to identify potential causative factors for early development defects, and expression of the cell adhesion molecule protocadherin-18a (pcdh18a), which controls epiboly, was significantly reduced in ethanol exposed embryos. Injecting pcdh18a synthetic mRNA in ethanol treated embryos partially rescued epiboly cell movements, including enveloping layer cell shape changes. Together, data show that epiboly and gastrulation defects induced by ethanol are multifactorial, and include yolk cell (extraembryonic tissue) microtubule cytoskeleton disruption and blastomere adhesion defects, in part caused by reduced pcdh18a expression.
  • Loading...
    Thumbnail Image
    Item
    ZIC3 in heterotaxy
    (SpringerLink, 2018) Bellchambers, Helen M.; Ware, Stephanie M.; Pediatrics, School of Medicine
    Mutation of ZIC3 causes X-linked heterotaxy, a syndrome in which the laterality of internal organs is disrupted. Analysis of model organisms and gene expression during early development suggests ZIC3-related heterotaxy occurs due to defects at the earliest stage of left-right axis formation. Although there are data to support abnormalities of the node and cilia as underlying causes, it is unclear at the molecular level why loss of ZIC3 function causes such these defects. ZIC3 has putative roles in a number of developmental signalling pathways that have distinct roles in establishing the left-right axis. This complicates the understanding of the mechanistic basis of Zic3 in early development and left-right patterning. Here we summarise our current understanding of ZIC3 function and describe the potential role ZIC3 plays in important signalling pathways and their links to heterotaxy.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University