- Browse by Subject
Browsing by Subject "Gamma-aminobutyric acid"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Effect of Primidone on Dentate Nucleus γ-Aminobutyric Acid Concentration in Patients With Essential Tremor(Wolters Kluwer, 2016-01) Louis, Elan D.; Hernandez, Nora; Dyke, Jonathan P.; Ma, Ruoyun; Dydak, Ulrike; Department of Radiology and Imaging Sciences, IU School of MedicineOBJECTIVES: It is not known whether current use of the medication primidone affects brain γ-aminobutyric acid (GABA) concentrations. This is an important potential confound in studies of the pathophysiology of essential tremor (ET), one of the most common neurological diseases. We compared GABA concentrations in the dentate nucleus in 6 ET patients taking primidone versus 26 ET patients not taking primidone. METHODS: (1)H magnetic resonance spectroscopy was performed using a 3.0-T Siemens Tim Trio scanner. The MEGA-PRESS J-editing sequence was used for GABA detection in 2 cerebellar volumes of interest (left and right) that included the dentate nucleus. RESULTS: The right dentate GABA concentration was similar in the 2 groups (2.21 ± 0.46 [on primidone] vs 1.93 ± 0.39 [not on primidone], P = 0.15), as was the left dentate GABA concentration (1.61 ± 0.35 [on primidone] vs 1.67 ± 0.34 [not on primidone], P = 0.72). The daily primidone dose was not associated with either right or left dentate GABA concentrations (P = 0.89 and 0.76, respectively). CONCLUSIONS: We did not find a difference in dentate GABA concentrations between 6 ET patients taking daily primidone and 26 ET patients not taking primidone. Furthermore, there was no association between daily primidone dose and dentate GABA concentration. These data suggest that it is not necessary to exclude ET patients on primidone from magnetic resonance spectroscopy studies of dentate GABA concentration, and if assessment of these concentrations was to be developed as a biomarker for ET, primidone usage would not confound interpretation of the results.Item In Vivo Dentate Nucleus Gamma-aminobutyric Acid Concentration in Essential Tremor vs. Controls(Springer Nature, 2018-04) Louis, Elan D.; Hernandez, Nora; Dyke, Jonathan P.; Ma, Ruoyun E.; Dydak, Ulrike; Radiology and Imaging Sciences, School of MedicineDespite its high prevalence, essential tremor (ET) is among the most poorly understood neurological diseases. The presence and extent of Purkinje cell (PC) loss in ET is the subject of controversy. PCs are a major storehouse of central nervous system gamma-aminobutyric acid (GABA), releasing GABA at the level of the dentate nucleus. It is therefore conceivable that cerebellar dentate nucleus GABA concentration could be an in vivo marker of PC number. We used in vivo 1H magnetic resonance spectroscopy (MRS) to quantify GABA concentrations in two cerebellar volumes of interest, left and right, which included the dentate nucleus, comparing 45 ET cases to 35 age-matched controls. 1H MRS was performed using a 3.0-T Siemens Tim Trio scanner. The MEGA-PRESS J-editing sequence was used for GABA detection in two cerebellar volumes of interest (left and right) that included the dentate nucleus. The two groups did not differ with respect to our primary outcome of GABA concentration (given in institutional units). For the right dentate nucleus, [GABA] in ET cases = 2.01 ± 0.45 and [GABA] in controls = 1.86 ± 0.53, p = 0.17. For the left dentate nucleus, [GABA] in ET cases = 1.68 ± 0.49 and [GABA] controls = 1.80 ± 0.53, p = 0.33. The controls had similar dentate nucleus [GABA] in the right vs. left dentate nucleus (p = 0.52); however, in ET cases, the value on the right was considerably higher than that on the left (p = 0.001). We did not detect a reduction in dentate nucleus GABA concentration in ET cases vs. CONTROLS: One interpretation of the finding is that it does not support the existence of PC loss in ET; however, an alternative interpretation is the observed pattern could be due to the effects of terminal sprouting in ET (i.e., collateral sprouting from surviving PCs making up for the loss of GABA-ergic terminals from PC degeneration). Further research is needed.Item A Magnetic Resonance Spectroscopy Study of Superior Visual Search Abilities in Children with Autism Spectrum Disorder(Wiley, 2020-04) Edmondson, David A.; Xia, Pingyu; McNally Keehn, Rebecca; Dydak, Ulrike; Keehn, Brandon; Radiology and Imaging Sciences, School of MedicineAlthough diagnosed on the basis of deficits in social communication and interaction, autism spectrum disorder (ASD) is also characterized by superior performance on a variety of visuospatial tasks, including visual search. In neurotypical individuals, region-specific concentrations of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) are associated with individual differences in attention and perception. While it has been hypothesized that ASD may be associated with an excitatory-inhibitory imbalance, it remains unclear how this may contribute to accelerated visual search performance in individuals with ASD. To investigate this, 21 children with ASD and 20 typically developing children participated in a visual search task and a magnetic resonance spectroscopy study to detect neurochemical concentrations, including GABA. Region-specific neurochemicals were examined in the right frontal eye fields, right temporal-parietal junction (rTPJ), and bilateral visual cortex (VIS). GABA concentrations did not differ between groups; however, in children with ASD, greater GABA concentration in the VIS was related to more efficient search. Additionally, lower VIS GABA levels were also associated with increased social impairment. Finally, we found reduced N-acetyl aspartate, total creatine, glutamate and glutamine (Glx), GABA/Glx in the rTPJ, suggestive of neuronal dysfunction in a critical network hub. Our results show that GABA concentrations in the VIS are related to efficient search in ASD, thus providing further evidence of enhanced discrimination in ASD. Autism Res 2020, 13: 550-562. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Children with autism spectrum disorder (ASD) often perform better than their non-ASD peers on visual search tasks; however, it is unclear how they achieve this superior performance. Using magnetic resonance spectroscopy to measure neurochemicals in the brain, we found that the level of one, gamma-aminobutyric acid, in the visual cortex was directly related to search abilities in children with ASD. These results suggest that faster search may relate to enhanced perceptual functioning in children with ASD.