- Browse by Subject
Browsing by Subject "Gait"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Effect of Investigator Observation on Gait Parameters in Individuals with Stroke(Elsevier, 2020-02-13) Ardestani, Marzieh M.; Hornby, T. George; Physical Medicine and Rehabilitation, School of MedicineImprovements in gait speed following various training paradigms applied to patients post-stroke does not always lead to changes in walking performance, defined as gains in daily stepping activity. We hypothesized that testing conditions, specifically the presence of an observer, influences patient behaviors and resultant outcomes may overestimate their true walking capacity. This potential Hawthorne effect on spatiotemporal and biomechanical measures of locomotor function in individuals post-stroke has not been assessed previously. Fifteen ambulatory individuals with chronic stroke wore instrumented insoles and performed two separate normal-pace walking assessments, including unobserved conditions during which participants were unattended and unaware of data collection, and observed conditions with an investigator present. Gait analysis was conducted outside of a laboratory setting using instrumented insoles equipped with a 3D accelerometer and pressure sensors which captured the spatiotemporal kinematics, vertical ground reaction forces and foot acceleration. Data were compared using paired comparisons, with subsequent correlation and stepwise regression analyses to explore potential associations between Hawthorne-induced changes in walking strategies, gait speed and locomotor performance (daily stepping). Except for cadence, other measures of spatiotemporal parameters and swing kinematics (acceleration) were not significantly different between observed vs unobserved conditions. However, analyses of ground reaction forces revealed significantly greater paretic limb loading (Δ1st peak = 1.5 ± 1.6 N/kg Δ2nd peak = 1.4 ± 1.8 N/kg; p < 0.01) and increases in weight bearing symmetry (11-24%, p < 0.01) during observed vs unobserved conditions. This potential Hawthorne effect was greater in those with slower walking speeds and shorter stride lengths but was not related to daily stepping. The present findings suggest that biomechanical parameters of walking function may be related to the presence of an observer and highlight the need to separately measure locomotor capacity (gait speed) and performance (daily stepping).Item Freezing of Gait in Parkinson’s Disease: Invasive and Noninvasive Neuromodulation(Elsevier, 2021-07) Rahimpour, Shervin; Gaztanaga, Wendy; Yadav, Amol P.; Chang, Stephano J.; Krucoff, Max O.; Cajigas, Iahn; Turner, Dennis A.; Wang, Doris D.; Neurological Surgery, School of MedicineIntroduction: Freezing of gait (FoG) is one of the most disabling yet poorly understood symptoms of Parkinson's disease (PD). FoG is an episodic gait pattern characterized by the inability to step that occurs on initiation or turning while walking, particularly with perception of tight surroundings. This phenomenon impairs balance, increases falls, and reduces the quality of life. Materials and methods: Clinical-anatomical correlations, electrophysiology, and functional imaging have generated several mechanistic hypotheses, ranging from the most distal (abnormal central pattern generators of the spinal cord) to the most proximal (frontal executive dysfunction). Here, we review the neuroanatomy and pathophysiology of gait initiation in the context of FoG, and we discuss targets of central nervous system neuromodulation and their outcomes so far. The PubMed database was searched using these key words: neuromodulation, freezing of gait, Parkinson's disease, and gait disorders. Conclusion: Despite these investigations, the pathogenesis of this process remains poorly understood. The evidence presented in this review suggests FoG to be a heterogenous phenomenon without a single unifying pathologic target. Future studies rigorously assessing targets as well as multimodal approaches will be essential to define the next generation of therapeutic treatments.Item Soft Tissue Manipulation May Attenuate Inflammation, Modulate Pain, and Improve Gait in Conscious Rodents With Induced Low Back Pain(Oxford University Press, 2021) Loghmani, M. Terry; Tobin, Carolyn; Quigley, Colleen; Fennimore, Alanna; Physical Therapy, School of Health and Human SciencesIntroduction: Low back pain (LBP) is common in warfighters. Noninvasive interventions are necessary to expedite return-to-function. Soft tissue manipulation, for example, massage, is a method used to treat LBP. Instrument-assisted soft tissue manipulation (IASTM) uses a rigid device to mobilize the tissue. This study explored the effects of IASTM on pain, function, and biomarkers. Methods: Sprague-Dawley rats (n = 44) were randomized to groups (n = 6/grp): (A) cage control; (B) 3 days (3d) postinjury (inj), untreated; (C) 3d inj, < 30-minute post-IASTM treatment; (D) 3d inj, 2 hours (2h) post-IASTM; (E) 14 days (14d) inj, untreated; (F) 14d inj, < 30-minute post-IASTM; and (G) 14d inj, 2h post-IASTM. Researchers induced unilateral LBP in Sprague-Dawley rats using complete Freund's adjuvant injection. Conscious rodents received IASTM for 5 min/session once at 3 days or 3×/week × 2weeks (6× total) over 14 days. Biomarker plasma levels were determined in all groups, while behavioral outcomes were assessed in two groups, D and G, at three time points: before injury, pre-, and post-IASTM treatment. Circulating mesenchymal stem cell levels were assessed using flow cytometry and cytokine plasma levels assayed. Results: The back pressure pain threshold (PPT) lowered bilaterally at 3 days postinjury (P < .05), suggesting increased pain sensitivity. IASTM treatment lowered PPT more on the injured side (15.8%; P < 0.05). At 14 days, back PPT remained lower but similar side to side. At 3 days, paw PPT increased 34.6% in the contralateral rear limb following treatment (P < .01). Grip strength did not vary significantly. Gait coupling patterns improved significantly (P < .05). Circulating mesenchymal stem cell levels altered significantly postinjury but not with treatment. Neuropeptide Y plasma levels increased significantly at 3 days, 2h post-IASTM (53.2%) (P < .05). Interleukin-6 and tumor necrosis factor-alpha did not vary significantly. At 14 days, regulated on activation, normal T cell expressed and secreted decreased significantly <30-minute post-IASTM (96.1%, P < .002), while IL-10 trended upward at 2h (53.1%; P = .86). Conclusions: LBP increased pain sensitivity and diminished function. IASTM treatment increased pain sensitization acutely in the back but significantly reduced pain sensitivity in the contralateral rear paw. Findings suggest IASTM may positively influence pain modulation and inflammation while improving gait patterns. Soft tissue manipulation may be beneficial as a conservative treatment option for LBP.Item Stepwise Regression and Latent Profile Analyses of Locomotor Outcomes Poststroke(American Heart Association, 2020-10) Hornby, T. George; Henderson, Christopher E.; Holleran, Carey L.; Lovell, Linda; Roth, Elliot J.; Jang, Jeong Hoon; Physical Medicine and Rehabilitation, School of MedicineBackground and purpose: Previous data suggest patient demographics and clinical presentation are primary predictors of motor recovery poststroke, with minimal contributions of physical interventions. Other studies indicate consistent associations between the amount and intensity of stepping practice with locomotor outcomes. The goal of this study was to determine the relative contributions of these combined variables to locomotor outcomes poststroke across a range of patient demographics and baseline function. Methods: Data were pooled from 3 separate trials evaluating the efficacy of high-intensity training, low-intensity training, and conventional interventions. Demographics, clinical characteristics, and training activities from 144 participants >1-month poststroke were included in stepwise regression analyses to determine their relative contributions to locomotor outcomes. Subsequent latent profile analyses evaluated differences in classes of participants based on their responses to interventions. Results: Stepwise regressions indicate primary contributions of stepping activity on locomotor outcomes, with additional influences of age, duration poststroke, and baseline function. Latent profile analyses revealed 2 main classes of outcomes, with the largest gains in those who received high-intensity training and achieved the greatest amounts of stepping practice. Regression and latent profile analyses of only high-intensity training participants indicated age, baseline function, and training activities were primary determinants of locomotor gains. Participants with the smallest gains were older (≈60 years), presented with slower gait speeds (<0.40 m/s), and performed 600 to 1000 less steps/session. Conclusions: Regression and cluster analyses reveal primary contributions of training interventions on mobility outcomes in patients >1-month poststroke. Age, duration poststroke, and baseline impairments were secondary predictors.