ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "GLT-1"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Amoxicillin and amoxicillin/clavulanate reduce ethanol intake and increase GLT-1 expression as well as AKT phosphorylation in mesocorticolimbic regions.
    (Elsevier, 2015-10-05) Goodwani, Sunil; Rao, P. S. S.; Bell, Richard L.; Sari, Youssef; Department of Psychiatry, IU School of Medicine
    Studies have shown that administration of the β-lactam antibiotic, ceftriaxone (CEF) attenuates ethanol consumption and cocaine seeking behavior as well as preventing ethanol-induced downregulation of glutamate transporter 1 (GLT-1) expression in central reward brain regions. However, it is not known if these effects are compound-specific. Therefore, the present study examined the effects of two other β-lactam antibiotics, amoxicillin (AMOX) and amoxicillin/clavulanate (Augmentin, AUG), on ethanol drinking, as well as GLT-1 and phosphorylated-AKT (pAKT) levels in the nucleus accumbens (Acb) and medial prefrontal cortex (mPFC) of alcohol-preferring (P) rats. P rats were exposed to free-choice of ethanol (15% and 30%) for five weeks and were given five consecutive daily i.p. injections of saline vehicle, 100 mg/kg AMOX or 100 mg/kg AUG. Both compounds significantly decreased ethanol intake and significantly increased GLT-1 expression in the Acb. AUG also increased GLT-1 expression in the mPFC. Results for changes in pAKT levels matched those for GLT-1, indicating that β-lactam antibiotic-induced reductions in ethanol intake are negatively associated with increases in GLT-1 and pAKT levels within two critical brains regions mediating drug reward and reinforcement. These findings add to a growing literature that pharmacological increases in GLT-1 expression are associated with decreases in ethanol intake and suggest that one mechanism mediating this effect may be increased phosphorylation of AKT. Thus, GLT-1 and pAKT may serve as molecular targets for the treatment of alcohol and drug abuse/dependence.
  • Loading...
    Thumbnail Image
    Item
    Ampicillin/Sulbactam Treatment Modulates NMDA Receptor NR2B Subunit and Attenuates Neuroinflammation and Alcohol Intake in Male High Alcohol Drinking Rats
    (MDPI, 2020-07-20) Alasmari, Fawaz; Alhaddad, Hasan; Wong, Woonyen; Bell, Richard L.; Sari, Youssef; Psychiatry, School of Medicine
    Exposure to ethanol commonly manifests neuroinflammation. Beta (β)-lactam antibiotics attenuate ethanol drinking through upregulation of astroglial glutamate transporters, especially glutamate transporter-1 (GLT-1), in the mesocorticolimbic brain regions, including the nucleus accumbens (Acb). However, the effect of β-lactam antibiotics on neuroinflammation in animals chronically exposed to ethanol has not been fully investigated. In this study, we evaluated the effects of ampicillin/sulbactam (AMP/SUL, 100 and 200 mg/kg, i.p.) on ethanol consumption in high alcohol drinking (HAD1) rats. Additionally, we investigated the effects of AMP/SUL on GLT-1 and N-methyl-d-aspartate (NMDA) receptor subtypes (NR2A and NR2B) in the Acb core (AcbCo) and Acb shell (AcbSh). We found that AMP/SUL at both doses attenuated ethanol consumption and restored ethanol-decreased GLT-1 and NR2B expression in the AcbSh and AcbCo, respectively. Moreover, AMP/SUL (200 mg/kg, i.p.) reduced ethanol-increased high mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) expression in the AcbSh. Moreover, both doses of AMP/SUL attenuated ethanol-elevated tumor necrosis factor-alpha (TNF-α) in the AcbSh. Our results suggest that AMP/SUL attenuates ethanol drinking and modulates NMDA receptor NR2B subunits and HMGB1-associated pathways.
  • Loading...
    Thumbnail Image
    Item
    Constitutive regulation of the glutamate/aspartate transporter EAAT1 by Calcium-Calmodulin-Dependent Protein Kinase II
    (Wiley, 2017-02) Chawla, Aarti R.; Johnson, Derrick E.; Zybura, Agnes S.; Leeds, Benjamin P.; Nelson, Ross M.; Hudmon, Andy; Biochemistry and Molecular Biology, School of Medicine
    Glutamate clearance by astrocytes is an essential part of normal excitatory neurotransmission. Failure to adapt or maintain low levels of glutamate in the central nervous system is associated with multiple acute and chronic neurodegenerative diseases. The primary excitatory amino acid transporters in human astrocytes are EAAT1 and EAAT2 (GLAST and GLT-1, respectively, in rodents). While the inhibition of calcium/calmodulin-dependent kinase (CaMKII), a ubiquitously expressed serine/threonine protein kinase, results in diminished glutamate uptake in cultured primary rodent astrocytes (Ashpole et al. 2013), the molecular mechanism underlying this regulation is unknown. Here, we use a heterologous expression model to explore CaMKII regulation of EAAT1 and EAAT2. In transiently transfected HEK293T cells, pharmacological inhibition of CaMKII (using KN-93 or tat-CN21) reduces [3 H]-glutamate uptake in EAAT1 without altering EAAT2-mediated glutamate uptake. While over-expressing the Thr287Asp mutant to enhance autonomous CaMKII activity had no effect on either EAAT1 or EAAT2-mediated glutamate uptake, over-expressing a dominant-negative version of CaMKII (Asp136Asn) diminished EAAT1 glutamate uptake. SPOTS peptide arrays and recombinant glutathione S-transferase-fusion proteins of the intracellular N- and C-termini of EAAT1 identified two potential phosphorylation sites at residues Thr26 and Thr37 in the N-terminus. Introducing an Ala (a non-phospho mimetic) at Thr37 diminished EAAT1-mediated glutamate uptake, suggesting that the phosphorylation state of this residue is important for constitutive EAAT1 function. Our study is the first to identify a glutamate transporter as a direct CaMKII substrate and suggests that CaMKII signaling is a critical driver of constitutive glutamate uptake by EAAT1.
  • Loading...
    Thumbnail Image
    Item
    Effects of chronic ethanol consumption on the expression of GLT-1 and neuroplasticity-related proteins in the nucleus accumbens of alcohol-preferring rats
    (Elsevier, 2020-12) Alhaddad, Hasan; Alasmari, Fawaz; Alhamadani, Balsam; Wong, Woonyen; Bell, Richard L.; Sari, Youssef; Psychiatry, School of Medicine
    Chronic ethanol exposure induces impairments in CNS excitatory and inhibitory activity. These impairments are associated with glutamatergic dysfunction, including altered neuroplasticity. This study examined the effects of 6-week ethanol (15% and 30% v/v) consumption, by male alcohol-preferring P rats, on protein expression associated with neuroplasticity and glutamate transporter-1 (GLT-1) function. The latter regulates intra- and extra-synaptic glutamate levels. We focused on the shell and core subregions of the nucleus accumbens (Acb); i.e., shell (AcbSh) and core (AcbCo), for these measures. Chronic ethanol exposure increased the expression of BDNF, Arc and phosphorylated (p)-post-synaptic density protein-95 (p-PSD-95) in the AcbSh of P rats. Moreover, the ratio of phospho-neuronal nitric oxide synthase (p-nNOS) to total nNOS was also increased in the AcbSh. These changes in BDNF, Arc and p-nNOS/nNOS ratio were not observed in the AcbCo. Furthermore, chronic ethanol consumption reduced GLT-1 expression in the AcbSh. Alternatively, treatment with ceftriaxone (CEF), a known GLT-1 upregulator, abolished the effect of chronic ethanol consumption on BDNF expression in the AcbSh. Overall, the present findings confirm that chronic ethanol consumption modulates activity-associated synaptic proteins, including BDNF, Arc and nNOS in a subregion-specific (i.e., in the AcbSh but not AcbCo) manner. Thus, alterations in mesocorticolimbic glutamatergic homeostasis and neuroplasticity are possible functional targets for the treatment of alcohol use disorders.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University