- Browse by Subject
Browsing by Subject "GENN"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item GENN: A GEneral Neural Network for Learning Tabulated Data with Examples from Protein Structure Prediction(Springer, 2015) Faraggi, Eshel; Kloczkowski, Andrzej; Biochemistry and Molecular Biology, School of MedicineWe present a GEneral Neural Network (GENN) for learning trends from existing data and making predictions of unknown information. The main novelty of GENN is in its generality, simplicity of use, and its specific handling of windowed input/output. Its main strength is its efficient handling of the input data, enabling learning from large datasets. GENN is built on a two-layered neural network and has the option to use separate inputs–output pairs or window-based data using data structures to efficiently represent input–output pairs. The program was tested on predicting the accessible surface area of globular proteins, scoring proteins according to similarity to native, predicting protein disorder, and has performed remarkably well. In this paper we describe the program and its use. Specifically, we give as an example the construction of a similarity to native protein scoring function that was constructed using GENN. The source code and Linux executables for GENN are available from Research and Information Systems at http://mamiris.com and from the Battelle Center for Mathematical Medicine at http://mathmed.org. Bugs and problems with the GENN program should be reported to EF.Item Reoptimized UNRES Potential for Protein Model Quality Assessment(MDPI, 2018-12-03) Faraggi, Eshel; Krupa, Pawel; Mozolewska, Magdalena A.; Liwo, Adam; Kloczkowski, Andrzej; Physics, School of ScienceRanking protein structure models is an elusive problem in bioinformatics. These models are evaluated on both the degree of similarity to the native structure and the folding pathway. Here, we simulated the use of the coarse-grained UNited RESidue (UNRES) force field as a tool to choose the best protein structure models for a given protein sequence among a pool of candidate models, using server data from the CASP11 experiment. Because the original UNRES was optimized for Molecular Dynamics simulations, we reoptimized UNRES using a deep feed-forward neural network, and we show that introducing additional descriptive features can produce better results. Overall, we found that the reoptimized UNRES performs better in selecting the best structures and tracking protein unwinding from its native state. We also found a relatively poor correlation between UNRES values and the model's Template Modeling Score (TMS). This is remedied by reoptimization. We discuss some cases where our reoptimization procedure is useful. The reoptimized version of UNRES (OUNRES) is available at http://mamiris.com and http://www.unres.pl.