- Browse by Subject
Browsing by Subject "GEE"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Interep: An R Package for High-Dimensional Interaction Analysis of the Repeated Measurement Data(MDPI, 2022-03-19) Zhou, Fei; Ren, Jie; Liu, Yuwen; Li, Xiaoxi; Wang, Weiqun; Wu, Cen; Biostatistics and Health Data Science, School of MedicineWe introduce interep, an R package for interaction analysis of repeated measurement data with high-dimensional main and interaction effects. In G × E interaction studies, the forms of environmental factors play a critical role in determining how structured sparsity should be imposed in the high-dimensional scenario to identify important effects. Zhou et al. (2019) (PMID: 31816972) proposed a longitudinal penalization method to select main and interaction effects corresponding to the individual and group structure, respectively, which requires a mixture of individual and group level penalties. The R package interep implements generalized estimating equation (GEE)-based penalization methods with this sparsity assumption. Moreover, alternative methods have also been implemented in the package. These alternative methods merely select effects on an individual level and ignore the group-level interaction structure. In this software article, we first introduce the statistical methodology corresponding to the penalized GEE methods implemented in the package. Next, we present the usage of the core and supporting functions, which is followed by a simulation example with R codes and annotations. The R package interep is available at The Comprehensive R Archive Network (CRAN).Item Joint modeling of longitudinal and survival outcomes using generalized estimating equations(2018-05-07) Zheng, Mengjie; Gao, Sujuan; Xu, Huiping; Zhang, Jianjun; Zhang, YingJoint models for longitudinal and time-to-event data has been introduced to study the association between repeatedly measured exposures and the risk of an event. The use of joint models allows a survival outcome to depend on some characteristic functions from the longitudinal measures. Current estimation methods include a two-stage approach, Bayesian and maximum likelihood estimation (MLEs) methods. The twostage method is computationally straightforward but often yields biased estimates. Bayesian and MLE methods rely on the joint likelihood of longitudinal and survival outcomes and can be computationally intensive. In this work, we propose a joint generalized estimating equation framework using an inverse intensity weighting approach for parameter estimation from joint models. The proposed method can be used to longitudinal outcomes from the exponential family of distributions and is computationally e cient. The performance of the proposed method is evaluated in simulation studies. The proposed method is used in an aging cohort to determine the relationship between longitudinal biomarkers and the risk of coronary artery disease.