- Browse by Subject
Browsing by Subject "GDF15"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Autophagy-related 7 (ATG7) regulates food intake and liver health during asparaginase exposure(Elsevier, 2025) Zalma, Brian A.; Ibrahim, Maria; Rodriguez-Polanco, Flavio C.; Bhavsar, Chintan T.; Rodriguez, Esther M.; Cararo-Lopes, Eduardo; Farooq, Saad A.; Levy, Jordan L.; Wek, Ronald C.; White, Eileen; Anthony, Tracy G.; Biochemistry and Molecular Biology, School of MedicineAmino acid starvation by the chemotherapy agent asparaginase is a potent activator of the integrated stress response (ISR) in the liver and can upregulate autophagy in some cell types. We hypothesized that autophagy-related 7 (ATG7), a protein that is essential for autophagy and an ISR target gene, was necessary during exposure to asparaginase to maintain liver health. We knocked down Atg7 systemically (Atg7Δ/Δ) or in hepatocytes only (ls-Atg7KO) in mice before exposure to pegylated asparaginase for 5 days. Intact mice injected with asparaginase lost body weight due to reduced food intake and increased energy expenditure. Systemic Atg7 ablation reduced liver protein synthesis and increased liver injury in vehicle-injected mice but did not further reduce liver protein synthesis, exacerbate steatosis or liver injury, or alter energy expenditure following 5 days of asparaginase exposure. Atg7Δ/Δ mice were unexpectantly protected from asparaginase-induced anorexia and weight loss. This protection corresponded with reduced phosphorylation of hepatic GCN2 and blunted increases in ISR gene targets including growth differentiation factor 15 (GDF15), a negative regulator of food intake. Interestingly, asparaginase elevated serum GDF15 and reduced food intake in ls-Atg7KO mice, similar to intact mice. Liver triglycerides and production of the hepatokine fibroblast growth factor 21, another ISR gene target, were suppressed in asparaginase-exposed Atg7Δ/Δ and ls-Atg7KO mice. This work identifies a bidirectional relationship between autophagy and the ISR in the liver during asparaginase, affecting food intake and liver health.Item Circulating Growth Differentiation Factor 15 (GDF15) in Paediatric Disease: A Systematic Review(Wiley, 2025) Kronenberger, David W.; Zimmers, Teresa A.; Ralston, Rick K.; Runco, Daniel V.; Pediatrics, School of MedicineBackground: Growth Differentiation Factor 15 (GDF15), a nonspecific inflammatory marker and member of the TGF-β superfamily, has a well-established role in both inflammation and metabolic modulation, but lacks a comprehensive paediatric literature review. In several adult disease states, including cancer cachexia and pregnancy, circulation and expression of GDF15 has been of clinical and scientific interest, but little published paediatric data exists. As such, we aim to summarize existing paediatric studies. Methods: This review follows the PRISMA-ScR guidelines for reporting and aims to summarize existing paediatric studies including GDF15, describe disease entities in which GDF15 has been investigated including existing reference ranges, and identify literature gaps to present future clinical and research direction. Our search strategy queried Ovid MEDLINE, Ovid Embase, Cochrane Library and Scopus databases to find original scientific articles measuring GDF15 from birth through children up to age 18. Data relating to study participant demographic and disease pathology, GDF15 measurement methods and clinical outcomes of interest were extracted. Results: Sixty-two studies were included, classified as cardiac, endocrine, mitochondrial, hematologic, neonatal, oncologic, infectious, rheumatologic, renal, neurologic or healthy. While several entities demonstrated elevated GDF15, the highest median GDF15 levels were observed in cardiac arrest 7089 pg/mL (interquartile range 3805-13 306) and mitochondrial diseases 4640 pg/mL (1896-14 064). In certain conditions, including cardiac stress, polycystic ovarian syndrome (PCOS), Kawasaki Disease (KD) and certain mitochondrial myopathies GDF15 can normalize with disease treatment or resolution. Of healthy children studied, GDF15 levels were highest in healthy neonates and followed a predictable pattern, decreasing over time. Mean and standard deviation values of GDF15 in healthy children were 343.8 ± 221.0 pg/mL, with a range of 90-1134 pg/mL for study averages. Conclusions: Circulating GDF15 has been studied in a variety of paediatric diseases. However, variable evaluated outcome measures and GDF15 measurement methodologies prevent generalizability and direct comparison of these published studies. Validating normal GDF15 levels in children with standardized and reproducible methodology will help clarify GDF15's utility as a diagnostic marker of disease, a necessary step to elucidate clinical implications of GDF15 over expression and its potential as a therapeutic target.Item Comprehensive Proteomics Analysis of Stressed Human Islets Identifies GDF15 as a Target for Type 1 Diabetes Intervention(Elsevier, 2020-02-04) Nakayasu, Ernesto S.; Syed, Farooq; Tersey, Sarah A.; Gritsenko, Marina A.; Mitchell, Hugh D.; Chan, Chi Yuet; Dirice, Ercument; Turatsinze, Jean-Valery; Cui, Yi; Kulkarni, Rohit N.; Eizirik, Decio L.; Qian, Wei-Jun; Webb-Robertson, Bobbie-Jo M.; Evans-Molina, Carmella; Mirmira., Raghavendra G.; Metz, Thomas O.; Pediatrics, School of MedicineType 1 diabetes (T1D) results from the progressive loss of β cells, a process propagated by pro-inflammatory cytokine signaling that disrupts the balance between pro- and anti-apoptotic proteins. To identify proteins involved in this process, we performed comprehensive proteomics of human pancreatic islets treated with interleukin-1β and interferon-γ, leading to the identification of 11,324 proteins, of which 387 were significantly regulated by treatment. We then tested the function of growth/differentiation factor 15 (GDF15), which was repressed by the treatment. We found that GDF15 translation was blocked during inflammation, and it was depleted in islets from individuals with T1D. The addition of exogenous GDF15 inhibited interleukin-1β+interferon-γ-induced apoptosis of human islets. Administration of GDF15 reduced by 53% the incidence of diabetes in NOD mice. Our approach provides a unique resource for the identification of the human islet proteins regulated by cytokines and was effective in discovering a potential target for T1D therapy.Item GDF15: a potential therapeutic target for type 1 diabetes(Taylor & Francis, 2022-01) Sarkar, Soumyadeep; Melchior, John T.; Henry, Hayden R.; Syed, Farooq; Mirmira, Raghavendra G.; Nakayasu, Ernesto S.; Metz, Thomas O.; Pediatrics, School of MedicineIntroduction: Current treatment for type 1 diabetes (T1D) is centered around insulin supplementation to manage the effects of pancreatic β cell loss. GDF15 is a potential preventative therapy against T1D progression that could work to curb increasing disease incidence. Areas covered: This paper discusses the known actions of GDF15, a pleiotropic protein with metabolic, feeding, and immunomodulatory effects, connecting them to highlight the open opportunities for future research. The role of GDF15 in the prevention of insulitis and protection of pancreatic β cells against pro-inflammatory cytokine-mediated cellular stress are examined and the pharmacological promise of GDF15 and critical areas of future research are discussed. Expert opinion: GDF15 shows promise as a potential intervention but requires further development. Preclinical studies have shown poor efficacy, but this result may be confounded by the measurement of gross GDF15 instead of the active form. Additionally, the effect of GDF15 in the induction of anorexia and nausea-like behavior and short-half-life present significant challenges to its deployment, but a systems pharmacology approach paired with chronotherapy may provide a possible solution to therapy for this currently unpreventable disease.Item Growth differentiation factor 15 (GDF15) elevation in children with newly diagnosed cancer(Frontiers Media, 2023-12-11) Runco, Daniel V.; DiMeglio, Linda A.; Vanderpool, Charles P.; Han, Yan; Daggy, Joanne; Kelley, Mary M.; Mikesell, Raya; Zimmers, Teresa A.; Pediatrics, School of MedicineBackground: Growth differentiation factor 15 (GDF15), an inflammatory marker and mediator of adult cancer cachexia, remains largely unexplored in children. GDF15 increases nausea, vomiting, and anorexia in cancer and contributes to malnutrition, with the potential to be a cachexia therapeutic target. No studies have examined GDF15 in children with newly diagnosed cancer. Our pilot study compares GDF15 in children with newly diagnosed cancer to age- and sex-matched controls and correlates levels with anthropometric measurements and quality of life (QOL). Methods: Children with newly diagnosed cancer aged 2-21 years were enrolled with serum GDF15 ELISA, anthropometric measures [height, weight, and mid-upper arm circumference (MUAC)], and QOL assessments (using PedsQL™ Core and Gastrointestinal Modules), which were collected at baseline and repeated 3 months later. Serum GDF15 levels were obtained from age- and sex-matched controls for comparison. Results: A total of 57 participants enrolled (N=30, cancer group; N=27, control group) with a median age of 8.8 years (IQR 5.6-15.9 years). The participants were primarily male (54.4%), white (82.5%), and non-Hispanic (82.5%). Cancer diagnoses included acute lymphoblastic leukemia (N=8), lymphoma (N=8), neuroblastoma (N=5), soft tissue tumors (N=4), acute myeloid leukemia (N=2), and single participants with brain, kidney, and bone tumors. Baseline GDF15 was higher in the cancer cohort compared to the control cohort (median=614.6pg/mL and 320.5pg/mL, respectively; p<0.001). When examining participants with evaluable baseline and 3-month follow-up GDF15 levels (N=18), GDF15 was not statistically different (median=657.1pg/mL and 675.3pg/mL, respectively; p=0.702). A total of 13 of the 30 participants and 21 caregivers completed the PedsQL™ Core and Gastrointestinal symptom modules. QOL scores did not differ significantly at 3-month follow-up compared to baseline, but diarrhea worsened (p=0.017). Median participant response for diarrhea at baseline was 92.9 (IQR=92.9-96.4; N=13), which was significantly better than the follow-up (median=78.6; IQR= 71.4-92.9; p=0.017). There were no correlations between change in height, weight, or MUAC and change in GDF15 levels (p=0.351, 0.920, and 0.269 respectively). Conclusion: GDF15 was elevated in children with cancer at diagnosis compared to controls but did not correlate with anthropometric measurements or QOL. This pilot study will inform future prospective studies to better describe the natural history of GDF15 and its role in cachexia and as a potential therapeutic target.