- Browse by Subject
Browsing by Subject "GCN5"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item GCN5-B is a Novel Nuclear Histone Acetyltransferase that is Crucial for Viability in the Protozoan Parasite Toxoplasma gondii(2011-03-16) Dixon, Stacey E.; Sullivan, William J., Jr.; Chan, Rebecca J.; Hocevar, Barbara A.; Queener, Sherry F.; Zhang, Jian-TingInfection with the single-celled parasite Toxoplasma gondii (phylum Apicomplexa) is usually benign in normal healthy individuals, but can cause congenital birth defects, ocular disease, and also life-threatening infection in immunocompromised patients. Acute infection caused by tachyzoites is controlled by a healthy immune response, but the parasite differentiates into a latent cyst form (bradyzoite) leading to permanent infection and chronic disease. Current therapies are effective only against tachyzoites, are highly toxic to the patient, and do not eradicate the encysted bradyzoites, thus highlighting the need for novel therapeutics. Inhibitors of histone deacetylases have been shown to reduce parasite viability in vitro demonstrating that chromatin remodeling enzymes, key mediators in epigenetic regulation, might serve as potential drug targets. Furthermore, epigenetic regulation has been shown to contribute to gene expression and differentiation in Toxoplasma. This dissertation focused on investigating the physiological role of a Toxoplasma GCN5-family histone acetyltransferase (HAT), termed TgGCN5-B. It was hypothesized that TgGCN5-B is an essential HAT that resides within a unique, multi-subunit complex in the parasite nucleus. Studies of TgGCN5-B have revealed that this HAT possesses a unique nuclear localization signal (311RPAENKKRGR320) that is both necessary and sufficient to translocate the protein to the parasite nucleus. Although no other protein motifs have been identified in the N-terminal extension of TgGCN5-B, it is likely that this extension plays a role in protein-protein interactions. All GCN5 homologues function within large multi-subunit complexes, many being conserved among species, but bioinformatic analysis of the Toxoplasma genome revealed a lack of many of these conserved components. Biochemical studies identified several potential TgGCN5-B associating proteins, including several novel apicomplexan transcription factors. Preliminary evidence suggested that TgGCN5-B was essential for tachyzoites; therefore, a dominant-negative approach was utilized to examine the role of TgGCN5-B in the physiology of Toxoplasma. When catalytically inactive TgGCN5-B protein was over-expressed in the parasites, there was a significant decrease in tachyzoite growth and viability, with initial observations suggesting defects in nuclear division and daughter cell budding. These results demonstrate that TgGCN5-B is important for tachyzoite development and indicate that therapeutic targeting of this HAT could be a novel approach to treat toxoplasmosis.Item Investigating the Function and Therapeutic Potential of the GCN5b Bromodomain in Toxoplasma Gondii(2020-06) Hanquier, Jocelyne Nicole; Sullivan, William J., Jr.; Arrizabalaga, Gustavo; Gilk, StaceyThe obligate intracellular protozoan parasite Toxoplasma gondii is a medically relevant pathogen that has infected a third of the world’s population. Toxoplasma is the causative agent of toxoplasmosis, which can have severe repercussions such as encephalitis and even death in immunocompromised patients. Current treatments for toxoplasmosis only target acute infection and can be toxic to patients, resulting in complications including allergy and bone marrow suppression. Thus, the identification of novel drug targets and therapies for toxoplasmosis is vital. Epigenetic modulators of lysine acetylation, including ‘writers,’ ‘erasers,’ and ‘readers,’ have been identified as promising drug targets for protozoan parasites. The lysine acetyltransferase (KAT) GCN5b appears to be an essential gene for Toxoplasma viability. The KAT domain of GCN5b is essential to GCN5b function and is targetable by small molecule inhibitors. While the acetyltransferase activity of this gene is well-characterized, the functionality of its C-terminal bromodomain (BRD) remains to be understood. Bromodomains are readers of lysine acetylation, and recently, bromodomain inhibitors have shown promise in a number of human diseases, as well as in protozoan parasites. We hypothesized that the GCN5b bromodomain is critical for Toxoplasma viability. The data reported herein suggest that the GCN5b bromodomain is important for tachyzoite viability and may serve as a novel therapeutic target in Toxoplasma.Item Regions of intrinsic disorder help identify a novel nuclear localization signal in Toxoplasma gondii histone acetyltransferase TgGCN5-B(Elsevier, 2011) Dixon, Stacy E.; Bhatti, Micah M.; Uversky, Vladimir N.; Dunker, A. Keith; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of MedicineWe have previously shown that protozoan parasites, such as Toxoplasma gondii, contain a high prevalence of intrinsically disordered regions in their predicted proteins. Here, we determine that both TgGCN5-family histone acetyltransferases (HATs) contain unusually high levels of intrinsic disorder. A previously identified basic-rich nuclear localization signal (NLS) in the N-terminus of TgGCN5-A is located within such a region of predicted disorder, but this NLS is not conserved in TgGCN5-B. We therefore analyzed the intrinsically disordered regions of TgGCN5-B for basic-rich sequences that could be indicative of a functional NLS, and this led to the identification of a novel NLS for TgGCN5-B, RPAENKKRGR. The functionality of the GCN5-B NLS was validated experimentally and has predictive value. These studies demonstrate that basic-rich sequences within regions predicted to be intrinsically disordered constitute criteria for a candidate NLS.