- Browse by Subject
Browsing by Subject "GC-MS"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Analysis of TNT, DNA Methylation, and Hair Pigmentation via Gas Chromatography-Mass Spectrometry and Spectroscopic Techniques(2019-08) Ruchti, Jacqueline; Goodpaster, John; Manicke, Nicholas; Picard, ChristineItem Solid-Phase Microextraction of Volatile Organic Compounds for Analytical and Forensic Applications(2023-12) Davis, Kymeri Elizabeth; Goodpaster, John; Frédérique, Deiss; Nicholas , Manicke; Sébastien , LaulhéGas chromatography-mass spectrometry (GC-MS) is a frequently used technique in forensic chemistry for the identification of controlled substances and explosives. GC-MS can be coupled with solid-phase microextraction (SPME), in which a fiber with a sorptive coating is placed into the headspace above a sample or directly immersed in a liquid sample. Analytes are adsorbed onto the fiber which is then placed inside the heated GC inlet for desorption. Illicit drugs are often found in the form of impure solids, mixed with other drugs, adulterants, and diluents. A simple method for the quick identification of drugs including methamphetamine, cocaine, heroin, fentanyl, and pharmaceutical tablets was developed. Headspace SPME methods were utilized with an elevated extraction temperature for the detection of various drugs in powder and tablet form. An extraction temperature of 120oC was used to encourage analytes into the headspace of the vial. A sample of the solid drug was placed in a headspace vial with no prior sample preparation or clean-up. This vial was then heated inside of an agitator where the sample was extracted. It was found that drugs in solid and tablet form can be detected using this high temperature headspace SPME method at the temperature of 120oC with no prior sample preparation. This method is simple, efficient, and cost effective for the detection of legal and illicit drugs in solid form. Headspace SPME may also be used for the analysis of explosive materials. Canines trained at detecting hidden explosives should be trained using real explosive materials that have minimal contamination by other explosive odors to ensure accurate identification of potential threats. Therefore, the potential for cross-contamination between training aids is of importance. There are various storage methods in use by canine handlers such as plastic and cloth bags, but these can lead to cross-contamination between training aids during storage. Alternatively, odor-permeable membrane devices (OPMDs) may store training aides and be used as a delivery device. A membrane in the OPMD allows for volatile compounds from the training aids to be released during training while helping to prevent contaminants from entering the device. OPMDs were used in addition to traditional storage containers to monitor the contamination and degradation of 14 explosives used as canine training aids. Samples included explosives that contain highly volatile compounds like dynamite and explosives with less volatile compounds like RDX. Explosives were stored individually using traditional storage bags or inside of an OPMD at two locations, IUPUI and an Indianapolis Metropolitan Police Department. The police department actively used the training aids during canine trainings. Samples from each storage type at both locations were collected at 0, 3, 6, and 9 months and analyzed using Fourier transform infrared (FTIR) spectroscopy and GC-MS with SPME. FTIR analyses showed no signs of degradation of the training aids from any timepoint or location. GC-MS identified cross-contamination from ethylene glycol dinitrate and/or 2,3-dimethyl-2,3-dinitrobutane across almost all samples regardless of storage condition. The contamination was found to be higher among training aids that were stored in traditional ways and were in active use by canine teams. Additionally, Time 0 had the highest level of contamination, indicating that explosive training aids are received from the vendors with initial cross-contamination. To test the initial cross-contamination levels of training aids, 11 explosive materials were ordered from three different vendors. A 1-gram sample of each was collected and analyzed using SPME with GC-MS. In several cases, explosive materials that are commercially available already exhibit elevated levels of contamination. This indicates that training aids must be acquiring contamination during manufacturing and/or storage at the vendor facility. The cross-contamination of explosive canine training aids stored in OPMDs was further evaluated and compared to traditional storage methods. This was done by storing various combinations of storage containers such as cloth bags, velcro bags, and OPMDs along with explosives and using activated charcoal strips to collect the volatile compounds such as 2,3-dimethyl-2,3-dinitrobutane and ethylene glycol dinitrate. Only one type of storage container, a velcro bag, showed evidence of contamination, indicating that OPMDs may not further prevent cross-contamination of explosive training aids.Item Synergistic Effect of β-Lapachone and Aminooxyacetic Acid on Central Metabolism in Breast Cancer(MDPI, 2022-07-22) Chang, Mario C.; Mahar, Rohit; McLeod, Marc A.; Giacalone, Anthony G.; Huang, Xiumei; Boothman, David A.; Merritt, Matthew E.; Radiation Oncology, School of MedicineThe compound β-lapachone, a naturally derived naphthoquinone, has been utilized as a potent medicinal nutrient to improve health. Over the last twelve years, numerous reports have demonstrated distinct associations of β-lapachone and NAD(P)H: quinone oxidoreductase 1 (NQO1) protein in the amelioration of various diseases. Comprehensive research of NQO1 bioactivity has clearly confirmed the tumoricidal effects of β-lapachone action through NAD-keresis, in which severe DNA damage from reactive oxygen species (ROS) production triggers a poly-ADP-ribose polymerase-I (PARP1) hyperactivation cascade, culminating in NAD/ATP depletion. Here, we report a novel combination strategy with aminooxyacetic acid (AOA), an aspartate aminotransferase inhibitor that blocks the malate-aspartate shuttle (MAS) and synergistically enhances the efficacy of β-lapachone metabolic perturbation in NQO1 breast cancer. We evaluated metabolic turnover in MDA-MB-231 , MDA-MB-231 , MDA-MB-468, and T47D cancer cells by measuring the isotopic labeling of metabolites from a [U-C]glucose tracer. We show that β-lapachone treatment significantly hampers lactate secretion by ~85% in NQO1 cells. Our data demonstrate that combinatorial treatment decreases citrate, glutamate, and succinate enrichment by ~14%, ~50%, and ~65%, respectively. Differences in citrate, glutamate, and succinate fractional enrichments indicate synergistic effects on central metabolism based on the coefficient of drug interaction. Metabolic modeling suggests that increased glutamine anaplerosis is protective in the case of MAS inhibition.