- Browse by Subject
Browsing by Subject "Functional recovery"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Deep Surgical Site Infection after Fracture Has a Profound Effect on Functional Outcomes(Wolters Kluwer, 2024-01-09) Gitajn, Ida Leah; Werth, Paul M.; Carlini, Anthony R.; Bosse, Michael J.; Gary, Joshua L.; Firoozabadi, Reza; Obremskey, William; McKinley, Todd O.; Castillo, Renan C.; O’Toole, Robert V.; Orthopaedic Surgery, School of MedicineBackground: Fracture-related infection is one of the most challenging complications in orthopaedic trauma surgery. However, the effect of infection on functional and pain-related outcomes has not been well established. The aims of this study were to evaluate functional recovery for patients with fracture and a deep surgical site infection compared with patients with fracture without infection and to evaluate whether pain severity, social support, and preinjury mental health have a moderating effect on the magnitude and direction of the relationship between deep surgical site infection and functional recovery. Methods: This is a secondary retrospective cohort study using prospectively collected data from the VANCO trial (Local Antibiotic Therapy to Reduce Infection After Operative Treatment of Fractures at High Risk of Infection) and the OXYGEN (Supplemental Perioperative Oxygen to Reduce Surgical Site Infection After High Energy Fracture Surgery) trial. In this study, 2,116 patients with tibial plateau, pilon, or calcaneal fractures at high risk for infection were included. Patients were divided into cohorts of patients who experienced a deep surgical site infection and those who did not. The primary outcome measure was the functional outcome using the Veterans RAND 12-Item Health Survey (VR-12). Results: After controlling for covariates, deep surgical site infection was independently associated with functional outcome, with a 3.3-point reduction in the VR-12 Physical Component Score, and pain severity was independently associated with functional outcome, with a 2.5-point reduction in the VR-12 Physical Component Score. Furthermore, the Brief Pain Inventory pain severity demonstrated an important moderating effect on the relationship between infection and functional outcome. In patients with lower pain scores, infection had a large negative impact on functional outcome, whereas, in patients with higher pain scores, infection had no significant impact on functional outcome. Furthermore, the functional outcome in the entire cohort remains at only 61% of baseline. Conclusions: This study documents the negative impact of postoperative infection on functional recovery after injury, as well as the novel finding of pain severity as an important moderating factor. This study emphasizes not only the importance of developing effective interventions designed to reduce postoperative infection, but also the role that factors that moderate pain severity plays in limiting recovery of physical function.Item Human Schwann Cell Transplantation for Spinal Cord Injury: Prospects and Challenges in Translational Medicine(Frontiers Media, 2021-06-18) Monje, Paula V.; Deng, Lingxiao; Xu, Xiao-Ming; Neurological Surgery, School of MedicineThe benefits of transplanting cultured Schwann cells (SCs) for the treatment of spinal cord injury (SCI) have been systematically investigated in experimental animals since the early 1990s. Importantly, human SC (hSC) transplantation for SCI has advanced to clinical testing and safety has been established via clinical trials conducted in the USA and abroad. However, multiple barriers must be overcome to enable accessible and effective treatments for SCI patients. This review presents available information on hSC transplantation for SCI with the intention to uncover gaps in our knowledge and discuss areas for future development. To this end, we introduce the historical progression of the work that supports existing and prospective clinical initiatives and explain the reasons for the choice of hSCs while also addressing their limitations as cell therapy products. A search of the relevant literature revealed that rat SCs have served as a preclinical model of reference since the onset of investigations, and that hSC transplants are relatively understudied, possibly due to the sophisticated resources and expertise needed for the traditional processing of hSC cultures from human nerves. In turn, we reason that additional experimentation and a reexamination of the available data are needed to understand the therapeutic value of hSC transplants taking into consideration that the manufacturing of the hSCs themselves may require further development for extended uses in basic research and clinical settings.Item Regeneration of Propriospinal Axons in Rat Transected Spinal Cord Injury through a Growth-Promoting Pathway Constructed by Schwann Cells Overexpressing GDNF(MDPI, 2024-07-08) Du, Xiaolong; Zhang, Shengqi; Khabbaz, Aytak; Cohen, Kristen Lynn; Zhang, Yihong; Chakraborty, Samhita; Smith, George M.; Wang, Hongxing; Yadav, Amol P.; Liu, Naikui; Deng, Lingxiao; Neurological Surgery, School of MedicineUnsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons’ regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft–host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.Item Surgical intervention combined with weight-bearing walking training improves neurological recoveries in 320 patients with clinically complete spinal cord injury: a prospective self-controlled study(Wolters Kluwer, 2021-05) Liu, Yansheng; Xie, Jia-Xin; Niu, Fang; Xu, Zhexi; Tan, Pengju; Shen, Caihong; Gao, Hongkun; Liu, Song; Ma, Zhengwen; So, Kwok-Fai; Wu, Wutian; Chen, Chen; Gao, Sujuan; Xu, Xiao-Ming; Zhu, Hui; Neurological Surgery, School of MedicineAlthough a large number of trials in the SCI field have been conducted, few proven gains have been realized for patients. In the present study, we determined the efficacy of a novel combination treatment involving surgical intervention and long-term weight-bearing walking training in spinal cord injury (SCI) subjects clinically diagnosed as complete or American Spinal Injury Association Impairment Scale (AIS) Class A (AIS-A). A total of 320 clinically complete SCI subjects (271 male and 49 female), aged 16-60 years, received early (≤ 7 days, n = 201) or delayed (8-30 days, n = 119) surgical interventions to reduce intraspinal or intramedullary pressure. Fifteen days post-surgery, all subjects received a weight-bearing walking training with the "Kunming Locomotion Training Program (KLTP)" for a duration of 6 months. The neurological deficit and recovery were assessed using the AIS scale and a 10-point Kunming Locomotor Scale (KLS). We found that surgical intervention significantly improved AIS scores measured at 15 days post-surgery as compared to the pre-surgery baseline scores. Significant improvement of AIS scores was detected at 3 and 6 months and the KLS further showed significant improvements between all pair-wise comparisons of time points of 15 days, 3 or 6 months indicating continued improvement in walking scores during the 6-month period. In conclusion, combining surgical intervention within 1 month post-injury and weight-bearing locomotor training promoted continued and statistically significant neurological recoveries in subjects with clinically complete SCI, which generally shows little clinical recovery within the first year after injury and most are permanently disabled. This study was approved by the Science and Research Committee of Kunming General Hospital of PLA and Kunming Tongren Hospital, China and registered at ClinicalTrials.gov (Identifier: NCT04034108) on July 26, 2019.Item Transplantation of Ciliary Neurotrophic Factor-Expressing Adult Oligodendrocyte Precursor Cells Promotes Remyelination and Functional Recovery after SpinalCord Injury(Society for Neuroscience, 2010-02-24) Cao, Qilin; He, Qian; Wang, Yaping; Cheng, Xiaoxin; Howard, Russell M.; Zhang, Yiping; DeVries, William H.; Shields, Christopher B.; Magnuson, David S. K.; Xu, Xiao-Ming; Kim, Dong H.; Whittemore, Scott R.; Neurological Surgery, School of MedicineDemyelination contributes to the dysfunction after traumatic spinal cord injury (SCI). We explored whether the combination of neurotrophic factors and transplantation of adult rat spinal cord oligodendrocyte precursor cells (OPCs) could enhance remyelination and functional recovery after SCI. Ciliary neurotrophic factor (CNTF) was the most effective neurotrophic factor to promote oligodendrocyte (OL) differentiation and survival of OPCs in vitro. OPCs were infected with retroviruses expressing enhanced green fluorescent protein (EGFP) or CNTF and transplanted into the contused adult thoracic spinal cord 9 d after injury. Seven weeks after transplantation, the grafted OPCs survived and integrated into the injured spinal cord. The survival of grafted CNTF-OPCs increased fourfold compared with EGFP-OPCs. The grafted OPCs differentiated into adenomatus polyposis coli (APC+) OLs, and CNTF significantly increased the percentage of APC+ OLs from grafted OPCs. Immunofluorescent and immunoelectron microscopic analyses showed that the grafted OPCs formed central myelin sheaths around the axons in the injured spinal cord. The number of OL-remyelinated axons in ventrolateral funiculus (VLF) or lateral funiculus (LF) at the injured epicenter was significantly increased in animals that received CNTF-OPC grafts compared with all other groups. Importantly, 75% of rats receiving CNTF-OPC grafts recovered transcranial magnetic motor-evoked potential and magnetic interenlargement reflex responses, indicating that conduction through the demyelinated axons in VLF or LF, respectively, was partially restored. More importantly, recovery of hindlimb locomotor function was significantly enhanced in animals receiving grafts of CNTF-OPCs. Thus, combined treatment with OPC grafts expressing CNTF can enhance remyelination and facilitate functional recovery after traumatic SCI.