- Browse by Subject
Browsing by Subject "Forensic biology"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Advancements in forensic DNA-based identification(2017) Dembinski, Gina M.; Picard, Christine; Christie, Mark; Walsh, Susan; Randall, Stephen; Goodpaster, JohnModern DNA profiling techniques have increased in sensitivity allowing for higher success in producing a DNA profile from limited evidence sources. However, this can lead to the amplification of more DNA profiles that do not get a hit on a suspect or DNA database and more mixture profiles. The work here aims to address or improve these consequences of current DNA profiling techniques. Based on allele-specific PCR and quantitative color measurements, a 24-SNP forensic phenotypic profile (FPP) assay was designed to simultaneously predict eye color, hair color, skin color, and ancestry, with the potential for age marker incorporation. Bayesian Networks (BNs) were built for model predictions based on a U.S sample population of 200 individuals. For discrete pigmentation traits using an ancestry influenced pigmentation prediction model, AUC values were greater than 0.65 for the eye, hair, and skin color categories considered. For ancestry using an all SNPs prediction model, AUC values were greater than 0.88 for the 5 continental ancestry categories considered. Quantitative pigmentation models were also built with prediction output as RGB values; the average amount of error was approximately 7% for eye color, 12% for hair color, and 8% for skin color. A novel sequencing method, methyl-RADseq, was developed to aid in the discovery of candidate age-informative CpG sites to incorporate into the FPP assay. There were 491 candidate CpG sites found that either increased or decreased with age in three forensically relevant xii fluids with greater than 70% correlation: blood, semen, and saliva. The effects of exogenous microbial DNA on human DNA profiles were analyzed by spiking human DNA with differing amounts of microbial DNA using the Promega PowerPlex® 16 HS kit. Although there were no significant effects to human DNA quantitation, two microbial species, B. subtilis and M. smegmatis, amplified an allelic artifact that mimics a true allele (‘5’) at the TPOX locus in all samples tested, interfering with the interpretation of the human profile. Lastly, the number of contributors of theoretically generated 2-, 3-, 4-, 5-, and 6-person mixtures were evaluated via allele counting with the Promega PowerPlex® Fusion 6C system, an amplification kit with the newly expanded core STR loci. Maximum allele count in the number of contributors for 2- and 3-person mixtures was correct in 99.99% of mixtures. It was less accurate in the 4-, 5-, and 6-person mixtures at approximately 90%, 57%, and 8%, respectively. This work provides guidance in addressing some of the limitations of current DNA technologies.Item Blood on FTA™ Paper: Does Punch Location Affect the Quality of a Forensic DNA Profile?(2013-03-06) Carter, Megan Elizabeth; Picard, Christine; Siegel, Jay A.; Randall, Stephen Karl, 1953-Forensic DNA profiling is widely used as an identification tool for associating an individual with evidence of a crime. Analysis of a DNA sample involves observation of data in the form of an electropherogram, and subsequently annotating a DNA “profile” from an individual or from the evidence. The profile obtained from the evidence can be compared to reference profiles deposited in a national DNA database, which may include the potential contributor. Following a match, a random match probability is calculated to determine how common that genotype is in the population. This is the probability of obtaining that same DNA profile by sampling from a pool of unrelated individuals. Each state has adopted various laws requiring suspects and/or offenders to submit a DNA sample for the national database (such as California’s law that all who are arrested must provide a DNA sample). These profiles can then be associated with past unsolved crimes, and remain in the database to be searched in the event of future crimes. In the case of database samples, a physical sample of the offender’s DNA must be kept on file in the laboratory indefinitely so that in the event of a database hit, the sample is able to be retested. Current methods are to collect a buccal swab or blood sample, and store the DNA extracts under strict preservation conditions, i.e. cold storage, typically -20° C. With continually increasing number of samples submitted, a burden is placed on crime labs to store these DNA extracts. A solution was required to help control the costs of properly storing the samples. FTA™ paper was created to fulfill the need for inexpensive, low maintenance, long term storage of biological samples, which makes it ideal for use with convicted offender DNA samples. FTA™ paper is a commercially produced, chemically treated paper that allows DNA to be stored at room temperature for years with no costly storage facilities or conditions. Once a sample is required for DNA testing, a small disc is removed and is to be used directly in a PCR reaction. A high quality profile is important for comparing suspect profiles to unknown or database profiles. A single difference between a suspect and evidentiary sample can lead to exclusion. Unfortunately, the DNA profile results yielded from the direct addition have been unfavorable. Thus, most crime laboratories will extract the DNA from the disc, leading to additional time and cost to analyze a reference sample. Many of the profiles from the direct addition of an FTA™ disc result in poor quality profiles, likely due to an increase in PCR inhibitors and high concentrations of DNA. Currently, standardized protocols regarding the recommended locations for removal of a sample disc from a bloodspot on an FTA™ card does not exist. This study aims to validate the optimal location by comparing DNA profiles obtained from discs removed from the center, halfway, and edge locations of a bloodspot from 50 anonymous donors. Optimal punch location was first scored on the number of failed, partial or discordant profiles. Then, profile quality was determined based on peak characteristics of the resulting DNA profiles. The results for all three disc locations were 5.3% failed amplifications, 4.2% partial amplifications, and one case of a discordant profile. Profile quality for the majority of the samples showed a high incidence of stutter and the absence of non-template adenylation. Of the three disc locations, the edge of the blood stain was ideal, due to a presumably lower concentration of DNA and likely more dilute amount of the PCR inhibitor heme. Therefore, based on the results of this study, there is a greater probability of success using a sample from the edge of a blood stain spotted in FTA™ paper than any other location of the FTA™ card.