- Browse by Subject
Browsing by Subject "Forensic"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Design and implementation of gas chromatography-mass spectrometry (GC-MS) methodologies for the analysis of thermally labile drugs and explosives(2016-11-18) Ash, Jordan R.; Goodpaster, John V.Gas Chromatography/Mass Spectrometry (GC/MS) is an analytical technique that sees frequent use in labs across the world. It is also one of the most common instruments found in forensic science laboratories. This technique can efficiently and accurately separate and identify a broad range of compounds that may be present in evidence submitted for analysis. In this work, the versatility of this instrument was applied to new methodologies for the detection of explosives and illicit drugs. The analysis of explosives by GC/MS is common but can be problematic. The thermally sensitive nature of some explosives can cause them to degrade when introduced to the high temperatures of a GC/MS inlet. This project looked at the design and implementation of a way to separate and detect a variety of nitrate ester explosives in a short amount of time. In addition to this, a new technique known as Total Vaporization-Solid Phase Microextraction (TV-SPME) was utilized as a pre concentration technique. The parameters for TV-SPME were statistically optimized for a low level of detection. The combination of these areas allowed for the separation of ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate, and pentaerythritol tetranitrate with a detection limit as low as 50 parts per trillion (ppt). Degradation products such as 1-mononitroglycerin, 1-3-dinitroglycerin, and 2-mononitroglycerin were also successfully identified. The problem of thermally labile compounds extends to the world of illicit drugs. In the second project, several derivatization schemes were developed for common controlled substances. N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS) was used for silylation, trifluoroacetic anhydride (TFAA) was sued for acylation, and (N,N-Dimethylformamide dimethyl acetal (DMF-DMA) for alkylation. Three different compound classes totaling 15 different drugs were investigated. N,N-Dimethylformamide dimethyl acetal (DMF-DMA) is presented as a novel way of derivatizing several drugs of interest. Primary amines and zwitterions were derivatized with this reagent to much success, specifically: amphetamine, 2-(4-Iodo-2,5-dimethoxyphenyl)ethan-1-amine (2C-I), pregabalin, and gabapentin.Item Evaluation of storage conditions on DNA used for forensic STR analysis(2014) Beach, Lisa Renae; Picard, Christine; Goodpaster, John V. (John Vincent); Randall, Stephen Karl, 1953-Short tandem repeat (STR) analysis is currently the most common method for processing biological forensic evidence. STRs are highly polymorphic and allow for a strong statistical power of discrimination when comparing deoxyribonucleic acid (DNA) samples. Since sample testing and court proceedings occur months, if not years apart, samples must be stored appropriately in the event additional testing is needed. There are generally accepted methods to store DNA extracts long-term; however, one universally recognized method does not exist. The goal of this project was to examine various methods of storage and make recommendations for a universal storage method that maintained DNA integrity over time. Four variables were evaluated: storage buffer, storage temperature, initial storage concentration and the effects of repeated freeze-thaw cycles. DNA quantity was assessed using real-time polymerase chain reaction and DNA quality was evaluated using STR genotyping. Overall, the Tris-EDTA (TE) buffer outperformed nuclease free water as a long-term storage buffer for DNA extracts. Stock tubes stabilized concentration better than single use aliquots when eluted with TE while tube type was not significant when water was the buffer. For samples stored in TE, temperature had no effect on DNA integrity over time, but samples stored in water were largely affected at room temperature. Additionally, the greater the initial DNA concentration, the less likely it was to degrade in water. As a result of this research, DNA extracts from forensic samples should be stored long-term in TE buffer with a minimum concentration of 0.1 ng/μL. When water is the buffer, frozen storage is recommended.Item New Distribution Record for Lucilia cuprina (Diptera: Calliphoridae) in Indiana, United States(Oxford University Press, 2018-07-01) Owings, Charity G.; Picard, Christine J.; Biology, School of ScienceDetermining range expansion for insect species is vital in order to evaluate their impact on new ecosystems and communities. This is particularly important for species which could be potentially harmful to humans or domestic animals. Lucilia cuprina Wiedemann (Diptera: Calliphoridae) can act as a facultative ectoparasite and has an extensive history as the primary inducer of sheep-strike in Australia, New Zealand, and Africa. We present here the first record of this species in Indiana, United States. Lucilia cuprina's range expansion northward in the United States may be indicative of changing environmental conditions conducive to the proliferation of this species into historically cooler climates. The presence of this species could significantly impact forensic death investigations utilizing dipteran larvae to estimate a minimum postmortem interval. If range expansion of this species is not taken into account by a forensic entomologist (especially if L. cuprina is not known previously in their region), an inaccurate minimum postmortem interval (PMIMIN) estimation may be made, given the differences in development times for both species. Therefore, the range expansion of this fly could have large impacts for many different entomological disciplines.