- Browse by Subject
Browsing by Subject "Force"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Development of a Mechatronics Instrument Assisted Soft Tissue Mobilization (IASTM) Device to Quantify Force and Orientation Angles(2016-05) Alotaibi, Ahmed Mohammed; Anwar, Sohel; Loghmani, Mary T.; Chien, Stanley Yung-PingInstrument assisted soft tissue mobilization (IASTM) is a form of massage using rigid manufactured or cast devices. The delivered force, which is a critical parameter in massage during IASTM, has not been measured or standardized for most clinical practices. In addition to the force, the angle of treatment and frequency play an important role during IASTM. As a result, there is a strong need to characterize the delivered force to a patient, angle of treatment, and stroke frequency. This thesis proposes two novel mechatronic designs for a specific instrument from Graston Technique(Model GT3), which is a frequently used tool to clinically deliver localize pressure to the soft tissue. The first design is based on compression load cells, where 4-load cells are used to measure the force components in three-dimensional space. The second design uses a 3D load cell, which can measure all three force components force simultaneously. Both designs are implemented with IMUduino microcontroller chips which can also measure tool orientation angles and provide computed stroke frequency. Both designs, which were created using Creo CAD platform, were also analyzed thorough strength and integrity using the finite element analysis package ANSYS. Once the static analysis was completed, a dynamic model was created for the first design to simulate IASTM practice using the GT-3 tool. The deformation and stress on skin were measured after applying force with the GT-3 tool. Additionally, the relationship between skin stress and the load cell measurements has been investigated. The second design of the mechatronic IASTM tool was validated for force measurements using an electronic plate scale that provided the baseline force values to compare with the applied force values measured by the tool. The load cell measurements and the scale readings were found to be in agreement within the expected degree of accuracy. The stroke frequency was computed using the force data and determining the peaks during force application. The orientation angles were obtained from the built-in sensors in the microchip.Item Direct and Extended Piezoresistive and Piezoelectric Strain Fusion for a Wide Band PVDF/MWCNT-Based 3D Force Sensor(IEEE, 2021) Alotaibi, Ahmed; Anwar, Sohel; Mechanical and Energy Engineering, School of Engineering and TechnologyThis paper presents a novel 3D force sensor design based on in-situ nanocomposite strain sensors. The polymer matrix of the polyvinylidene fluoride (PVDF) and multi-walled carbon nanotubes (MWCNT) conductive filler nanocomposite film have been chosen as sensing elements for the 3D force sensor. A bioinspired tree branch design was used as the 3D force sensor’s elastic structure, that was built using thin Aluminum plates and a laser cutting fabrication process. The PVDF/MWCNT films contained piezoresistive and piezoelectric characteristics, allowing for static/low and dynamic strain measurements, respectively. Two compositions with 0.1 and 2 wt.% PVDF/MWCNT sensing elements were selected for piezoelectric and piezoresistive strain measurements, respectively. These characteristic measurements were investigated under different loading frequencies in a simply supported beam experiment. The 3D force sensor was tested under dynamic excitation in the Z-direction and the X-direction. A Direct Piezoresistive/Piezoelectric fusion (DPPF) method was developed by fusing the piezoresistive and piezoelectric measurements at a given frequency that overcomes the limited frequency ranges of each of the strain sensor characteristics. The DPPF method is based on a fuzzy inference system (FIS) which is constructed and tuned using the subtractive clustering technique. Different nonlinear Hammerstein-Wiener (nlhw) models were used to estimate the actual strain from piezoresistive and piezoelectric measurements at the 3D force sensor. In addition, an Extended direct Piezoresistive/Piezoelectric fusion (EPPF) algorithm is introduced to enhance the DPPF method via performing the fusion in a range of frequencies instead of a particular one. The DPPF and EPPF methods were implemented on the 3D force sensor data, and the developed fusion algorithms were tested on the new 3D force sensor via experimental data. The simulation results show that the proposed fusion methods have been effective in achieving lower Root Mean Square Error (RMSE) in the estimated strain than those obtained from the tuned nlhw models at different operating frequencies.Item Three-dimensional quantification of pretorqued nickel-titanium wires in edgewise and prescription brackets(Allen Press, 2013) Mittal, Nitika; Xia, Zeyang; Chen, Jie; Stewart, Kelton T.; Liu, Sean Shih-Yao; Orthodontics and Oral Facial Genetics, School of DentistryObjective: To quantify the three-dimensional moments and forces produced by pretorqued nickel-titanium (NiTi) rectangular archwires fully engaged in 0.018- and 0.022-inch slots of central incisor and molar edgewise and prescription brackets. Materials and methods: Ten identical acrylic dental models with retroclined maxillary incisors were fabricated for bonding with various bracket-wire combinations. Edgewise, Roth, and MBT brackets with 0.018- and 0.022-inch slots were bonded in a simulated 2 × 4 clinical scenario. The left central incisor and molar were sectioned and attached to load cells. Correspondingly sized straight and pretorqued NiTi archwires were ligated to the brackets using 0.010-inch ligatures. Each load cell simultaneously measured three force (Fx, Fy, Fz) and three moment (Mx, My, Mz) components. The faciolingual, mesiodistal, and inciso-occluso/apical axes of the teeth corresponded to the x, y, and z axes of the load cells, respectively. Each wire was removed and retested seven times. Three-way analysis of variance (ANOVA) examined the effects of wire type, wire size, and bracket type on the measured orthodontic load systems. Interactions among the three effects were examined and pair-wise comparisons between significant combinations were performed. Results: The force and moment components on each tooth were quantified according to their local coordinate axes. The three-way ANOVA interaction terms were significant for all force and moment measurements (P < .05), except for Fy (P > .05). Conclusion: The pretorqued wire generates a significantly larger incisor facial crown torquing moment in the MBT prescription compared to Roth, edgewise, and the straight NiTi wire.Item Ultrasonic propulsion of kidney stones: preliminary results of human feasibility study(Institute of Electrical and Electronics Engineers, 2014-09-03) Bailey, Michael; Cunitz, Bryan; Dunmire, Barbrina; Paun, Marla; Lee, Franklin; Ross, Susan; Lingeman, James; Coburn, Michael; Wessells, Hunter; Sorensen, Mathew; Harper, Jonathan; Department of Medicine, IU School of MedicineOne in 11 Americans has experienced kidney stones, with a 50% average recurrence rate within 5-10 years. Ultrasonic propulsion (UP) offers a potential method to expel small stones or residual fragments before they become a recurrent problem. Reported here are preliminary findings from the first investigational use of UP in humans. The device uses a Verasonics ultrasound engine and Philips HDI C5-2 probe to generate real-time B-mode imaging and targeted "push" pulses on demand. There are three arms of the study: de novo stones, post-lithotripsy fragments, and the preoperative setting. A pain questionnaire is completed prior to and following the study. Movement is classified based on extent. Patients are followed for 90 days. Ten subjects have been treated to date: three de novo, five post-lithotripsy, and two preoperative. None of the subjects reported pain associated with the treatment or a treatment related adverse event, beyond the normal discomfort of passing a stone. At least one stone was moved in all subjects. Three of five post-lithotripsy subjects passed a single or multiple stones within 1-2 weeks following treatment; one subject passed two (1-2 mm) fragments before leaving clinic. In the pre-operative studies we successfully moved 7 - 8 mm stones. In four subjects, UP revealed multiple stone fragments where the clinical image and initial ultrasound examination indicated a single large stone.