- Browse by Subject
Browsing by Subject "Fold angle"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item The Impact of Ligand Oxidation State and Fold Angle on the Charge Transfer Processes of MoIVO-Dithione Complexes(Wiley, 2021) Dille, Sara A.; Colston, Kyle J.; Mogesa, Benjamin; Cassell, Joseph; Perera, Eranda; Zeller, Matthias; Basu, Partha; Chemistry and Chemical Biology, School of ScienceWe report a series of mononuclear monooxo Mo(IV) complexes possessing either one or two fully oxidized dithiolene ligands; [MoOCl(R2Dt0)2][X], (1 and 2), and MoO(p-SC6H4Y)2(R2Dt0), (3 and 4), (R=Me, i Pr; X= PF6, SbF6, BF4; Y= H, Cl, F, CF3, Me, t Bu, OMe). Either four or two quasi-reversible ligand-based redox couples are detected depending upon the number of fully oxidized dithiolene ligands present. The molecular structure of 3 and 4 exhibit a large (47° to 70°) fold angle along the S•••S vector of the dithione ligand. The UV-Vis spectra of 3 and 4 exhibit a low energy charge transfer band at ~540 nm that are red-shifted ~200 nm compared to the spectra of 1 and 2. Density Functional Theory (DFT) calculations show that the low energy charge transfer band of 3 and 4 is heavily influenced by ligand fold angle. Reducing the fold angle decreases the charge transfer energy, and the transition becomes more ligand-based.