- Browse by Subject
Browsing by Subject "Flortaucipir"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Association of the top 20 Alzheimer's disease risk genes with [18F]flortaucipir PET(Alzheimer’s Association, 2022-05-11) Stage, Eddie; Risacher, Shannon L.; Lane, Kathleen A.; Gao, Sujuan; Nho, Kwangsik; Saykin, Andrew J.; Apostolova, Liana G.; Alzheimer’s Disease Neuroimaging Initiative; Neurology, School of MedicineIntroduction: We previously reported genetic associations of the top Alzheimer's disease (AD) risk alleles with amyloid deposition and neurodegeneration. Here, we report the association of these variants with [18F]flortaucipir standardized uptake value ratio (SUVR). Methods: We analyzed the [18F]flortaucipir scans of 352 cognitively normal (CN), 160 mild cognitive impairment (MCI), and 54 dementia (DEM) participants from Alzheimer's Disease Neuroimaging Initiative (ADNI)2 and 3. We ran step-wise regression with log-transformed [18F]flortaucipir meta-region of interest SUVR as the outcome measure and genetic variants, age, sex, and apolipoprotein E (APOE) ε4 as predictors. The results were visualized using parametric mapping at familywise error cluster-level-corrected P < .05. Results: APOE ε4 showed significant (P < .05) associations with tau deposition across all disease stages. Other significantly associated genes include variants in ABCA7 in CN, CR1 in MCI, BIN1 and CASS4 in MCI and dementia participants. Discussion: We found significant associations to tau deposition for ABCA7, BIN1, CASS4, and CR1, in addition to APOE ε4. These four variants have been previously associated with tau metabolism through model systems.Item Cryo-EM Structures of Chronic Traumatic Encephalopathy Tau Filaments with PET Ligand Flortaucipir(Elsevier, 2023) Shi, Yang; Ghetti, Bernardino; Goedert, Michel; Scheres, Sjors H. W.; Pathology and Laboratory Medicine, School of MedicinePositron emission tomography (PET) imaging allows monitoring the progression of amyloid aggregation in the living brain. [18F]-Flortaucipir is the only approved PET tracer compound for the visualisation of tau aggregation. Here, we describe cryo-EM experiments on tau filaments in the presence and absence of flortaucipir. We used tau filaments isolated from the brain of an individual with Alzheimer's disease (AD), and from the brain of an individual with primary age-related tauopathy (PART) with a co-pathology of chronic traumatic encephalopathy (CTE). Unexpectedly, we were unable to visualise additional cryo-EM density for flortaucipir for AD paired helical or straight filaments (PHFs or SFs), but we did observe density for flortaucipir binding to CTE Type I filaments from the case with PART. In the latter, flortaucipir binds in a 1:1 molecular stoichiometry with tau, adjacent to lysine 353 and aspartate 358. By adopting a tilted geometry with respect to the helical axis, the 4.7 Å distance between neighbouring tau monomers is reconciled with the 3.5 Å distance consistent with π-π-stacking between neighbouring molecules of flortaucipir.Item Topographic staging of tau positron emission tomography images(Elsevier, 2018-02-14) Schwarz, Adam J.; Shcherbinin, Sergey; Slieker, Lawrence J.; Risacher, Shannon L.; Charil, Arnaud; Irizarry, Michael C.; Fleisher, Adam S.; Southekal, Sudeepti; Joshi, Abhinay D.; Devous, Michael D., Sr.; Miller, Bradley B.; Saykin, Andrew J.; Alzheimer's Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineIntroduction: It has been proposed that the signal distribution on tau positron emission tomography (PET) images could be used to define pathologic stages similar to those seen in neuropathology. Methods: Three topographic staging schemes for tau PET, two sampling the temporal and occipital subregions only and one sampling cortical gray matter across the major brain lobes, were evaluated on flortaucipir F 18 PET images in a test-retest scenario and from Alzheimer's Disease Neuroimaging Initiative 2. Results: All three schemes estimated stages that were significantly associated with amyloid status and when dichotomized to tau positive or negative were 90% to 94% concordant in the populations identified. However, the schemes with fewer regions and simpler decision rules yielded more robust performance in terms of fewer unclassified scans and increased test-retest reproducibility of assigned stage. Discussion: Tau PET staging schemes could be useful tools to concisely index the regional involvement of tau pathology in living subjects. Simpler schemes may be more robust.